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Abstract
Neural codes serve as a language for neurons in the brain. Open (or closed) convex
codes, which arise from the pattern of intersections of collections of open (or closed)
convex sets in Euclidean space, are of particular relevance to neuroscience. Not every
code is open or closed convex, however, and the combinatorial properties of a code
that determine its realization by such sets are still poorly understood. Here we find
that a code that can be realized by a collection of open convex sets may or may not
be realizable by closed convex sets, and vice versa, establishing that open convex and
closed convex codes are distinct classes. We establish a non-degeneracy condition that
guarantees that the corresponding code is both open convex and closed convex.We also
prove thatmax intersection-complete codes (i.e., codes that contain all intersections of
maximal codewords) are both open convex and closed convex, and provide an upper
bound for their minimal embedding dimension. Finally, we show that the addition of
non-maximal codewords to an open convex code preserves convexity.
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1 Introduction

The brain represents information via patterns of neural activity. Often, one can think
of these patterns as strings of binary responses, where each neuron is “on” or “off”
according to whether or not a given stimulus lies inside its receptive field. In this sce-
nario, the receptive field Ui ⊂ X of a neuron i is simply the subset of stimuli to which
it responds, with X being the entire stimulus space. A collection U = {U1, . . . ,Un}
of receptive fields for a population of neurons [n] def= {1, . . . , n} gives rise to the
combinatorial code1

code(U , X)
def= {

σ ⊆ [n] such that AU
σ �= ∅

} ⊆ 2[n],

where 2[n] is the set of all subsets of [n], and the atoms AU
σ correspond to regions of

the stimulus space carved out by U :

AU
σ

def=
(⋂

i∈σ

Ui

)
\

⋃

j /∈σ

Uj ⊆ X .

Here every stimulus x ∈ AU
σ gives rise to the same neural response pattern, or code-

word, σ ⊆ [n]. By convention,
⋂

i∈∅
Ui = X and thus AU

∅
= X\(⋃n

i=1Ui
)
, so that

∅ ∈ code(U , X) if and only if
⋃n

i=1Ui �= X . Note that code(U , X) may fail to be an
abstract simplicial complex; see e.g., Fig. 1.

Definition 1.1 We say that a combinatorial code C ⊆ 2[n] is open convex if C =
code(U , X) for a collection U = {Ui }ni=1 of open convex subsets Ui ⊆ X ⊆ R

d

for some d ≥ 1. Similarly, we say that C is closed convex if C = code(U , X) for
a collection of closed convex subsets Ui ⊆ X ⊆ R

d . For an open convex code C,
the embedding dimension odim C is the minimal d for which there exists an open
convex realization of C as code(U , X). Similarly, for a closed convex code cdim C is
the minimal d that admits a closed convex realization of C.

Note that if the condition that all sets are open, or alternatively all sets are closed, is
relaxed, then there are no known obstructions for a code to arise as a code of a convex
cover. In particular, it has been proved in [5] that any code can be realized as a code
of a cover by arbitrary convex sets. For this reason, we only consider either open or
closed convex codes.

Open and closed convex codes have special relevance to neuroscience because
neurons in a number of areas of mammalian brains possess convex receptive fields. A
paradigmatic example is that of hippocampal place cells [12], a class of neurons in the
hippocampus that act as position sensors. Here the relevant stimulus space X ⊂ R

d

is the animal’s environment [14], with d ∈ {1, 2, 3}. Receptive fields can be easily

1 A combinatorial code is any collection of subsets C ⊆ 2[n]. Each σ ∈ C is called a codeword.
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Fig. 1 An example of a cover
U = {Ui } and its code,
C = code(U , X) =
{∅, 2, 3, 12, 23, 34, 123}, where
X = R

2. Here we denote a
codeword {i1, i2, . . . , ik } ∈ C by
the string i1i2 . . . ik ; for
example, {1, 2, 3} is abbreviated
to 123. Since 13 /∈ C but
13 ⊂ 123, C is not a simplicial
complex

U1

U3U2

U4

computed when both the neuronal activity data and the relevant stimulus space are
available. However, in many situations the relevant stimulus space for a given neural
population may be unknown. This raises the natural question: how can one determine
from the intrinsic properties of a combinatorial code whether or not it is an open (or
closed) convex code? What is the embedding dimension of a code – that is, what is
the dimension of the relevant stimulus space? How are open and closed convex codes
related?

The code of a cover carries more information about the geometry/topology of the
underlying space than the nerve of the cover. For example, it imposes more constraints
on the embedding dimension than what is imposed by the nerve [3]. Arrangements
of convex sets are ubiquitous in applied and computational topology, however all the
standard constructions (e.g., the Čech complex) rely only on the nerve of the cover,
and do not carry any information about the arrangement beyond the nerve. While the
properties of nerves of convex covers were previously studied in [8,9,13], codes of
convex covers are much less understood. Moreover, although any simplicial complex
can be realized as the nerve of an open or closed convex cover (in high enough
dimension), not all combinatorial codes can be realized from arrangements of open or
closed convex sets in Euclidean space.

There is currently little understanding of what makes a code open or closed convex
beyond ‘local obstructions’ to convexity [2,6]. Furthermore, local obstructions can
only be used to show that a code is not open or closed convex, and the absence of local
obstructions does not guarantee open or closed convexity of the code [11]. To show
that a code is open or closed convex, one must produce a realization, and there are few
results that guarantee such an open or closed convex realization exists. Our first main
result makes significant progress in this regard, as it provides a general condition for
determining that a code is convex fromcombinatorial properties alone. Specifically,we
show that max intersection-complete codes—i.e., codes that contain all intersections
of their maximal2 codewords—are both open convex and closed convex.

Theorem 1.2 Suppose C ⊂ 2[n] is a max intersection-complete code. Then C is both
open convex and closed convex.Moreover, the embedding dimensions satisfy odim C ≤
max {2, (k − 1)} and cdim C ≤ max {2, (k − 1)}, where k is the number of maximal
codewords of C.

The fact that max intersection-complete codes are open convex was first hypoth-
esized in [2], where it was shown that these codes have no local obstructions. In our

2 A codeword in σ ∈ C is maximal if, as a subset σ ⊆ [n], it is not contained in any other codeword of C.
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proof we provide an explicit construction of the convex realizations and the upper
bound for the corresponding embedding dimensions. This dimension bound is tight. It
is achieved on the “deleted simplex code” C = 2[k]\[k], since Helly’s theorem forbids
a realization of this code by convex sets in R

d for any d < k − 1.
Our next main result shows that open convex codes exhibit a certain type of mono-

tonicity, in the sense that adding non-maximal codewords to an open convex code
preserves convexity.

Theorem 1.3 Assume that a code C ⊂ 2[n] is open convex. If D ⊃ C has the same
maximal codewords as C, then D is also open convex and has embedding dimension
odimD ≤ odim C + 1.

It is currently unknown if themonotonicity property holds for the closed convex codes.
It has been recently shown in [5] that any code can be realized by a convex cover

in the absence of any other constraints imposed on the convex sets in the cover. This
highlights the importance of the “open” or “closed” conditions in Definition 1.1 and
raises a natural question: what is the relationship of the open and the closed convex
codes?

Here we establish that open convex codes and closed convex codes are indeed
distinct classes of codes, that is, one class is not a sub-class of the other. This result
suggests that combinatorial properties of convex codes are richer than previously
believed. This finding motivates us to find a non-degeneracy condition on the cover
that guarantees that the corresponding code is both open convex and closed convex.
Theorem 2.12 in Sect. 2.3 establishes that this condition is sufficient. It is also used
as one of the main ingredients in the proof of Theorem 1.2. We propose that codes
that are both open convex and closed convex are the most relevant to neuroscience, as
the intrinsic noise in neural responses makes the difference between open and closed
receptive fields unobservable [10].

2 Convex Codes

We begin with observing that without sufficiently strong assumptions about the cover
U = {Ui }, any code can be realized as code(U , X).

Lemma 2.1 Every code C ⊂ 2[n] can be obtained as C = code(U , X) for a collection
of (not necessarily convex) Ui ⊂ R

1.

Proof It suffices to consider the case where each i ∈ [n] appears in some codeword
σ ∈ C. For each σ ∈ C, choose points xσ ∈ R

1 such that xσ �= xτ if σ �= τ . Define
Ui = {xσ | i ∈ σ } and U = {Ui }i∈[n]. If ∅ ∈ C, then C = code(U , R

1). Otherwise,
C = code(U , X), where X = ⋃

σ∈C{xσ }. 	

The sets Ui in the above proof are finite subsets of R

1. However, even if one requires
that the sets Ui be open and connected, almost all codes can still arise as the code of
such cover.
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Lemma 2.2 Any code C ⊂ 2[n] that contains all singleton codewords, i.e., ∀i ∈
[n], {i} ∈ C, can be obtained as C = code(U , X) for a collection of open connected
subsets Ui ⊂ R

3.

Proof Similar to the proof of Lemma 2.1, one can place disjoint open balls Bσ ⊂ R
3

for each σ ∈ C and define Ui = (⋃
i∈σ Bσ

) ∪ Ti , where each Ti ⊂ R
3 is a collection

of open “narrow tubes” that connect all the balls Bσ with σ 
 i . Because these
sets are embedded in R

3, the “tubes” Ti can always be arranged so that for each
i �= j the intersections Ti ∩ Tj are contained in the union of the balls Bσ . Take
X = (⋃n

i=1Ui
) ∪ B∅ if ∅ ∈ C, or X = ⋃n

i=1Ui if not. By construction, the Ui are
connected and open, and C = code(U , X). 	

The condition of having all singleton words can not be relaxed without any further
assumptions. For example, it can be easily shown that the code C = {∅, 1, 2, 13, 23},
previously described in [3,6] cannot be realized as a code of a cover by open connected
sets.3

2.1 Known Local Obstructions to Convexity

Any combinatorial code C ⊂ 2[n] can be completed to an abstract simplicial complex
�(C), the simplicial complex of the code, which is the minimal simplicial complex
containing C.4 Note that �(C) is determined solely by the maximal codewords of C
(facets of �(C)). A code can thus be thought of as a simplicial complex with some of
its non-maximal faces “missing”. Moreover, given a collection of sets U and X , one
can easily see that the simplicial complex of code(U , X) is equal to the usual nerve of
the cover U :

�(code(U , X)) = nerve(U)
def=

{
σ ⊆ [n] such that

⋂

i∈σ

Ui �= ∅

}
.

For example, Fig. 1 depicts a code of the form C = code(U , X) that differs from its
simplicial complex �(C) because the subset {1, 3} is missing. This results from the
fact that U1 ∩U3 ⊆ U2, a set containment that is not encoded in nerve(U).

Not every code arises from a closed convex or open convex cover. For example,
the code C = {∅, 1, 2, 13, 23} above cannot be an open (or closed) convex code. The
failure of this code to be open or closed convex is “local” in that it is missing the
codeword 3, and adding new codewords which do not include i = 3 would not make
this code open or closed convex.

In the setting of simplicial complexes, such locality is often characterized by study-
ing an auxiliary simplicial complex called the link of a simplex. This notion can be
directly generalized for codes.

3 Indeed, assuming the converse, it follows that U3 = (U1 ∩ U3) ∪ (U2 ∩ U3) and, since this code does
not contain a codeword σ ⊇ 12, we conclude that U1 ∩ U2 = ∅ and U3 is a union of two disjoint open
sets, which yields a contradiction.
4 Throughout, we assume that ∅ is an element of every abstract simplicial complex.
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Definition 2.3 For any σ ⊂ [n] the link of C at σ is the code linkσ C ⊆ 2[n]\σ ⊂ 2[n]
on the same set of neurons, defined as

linkσ C def= {
τ ∈ 2[n]\σ ∣∣ τ ∪ σ ∈ C and τ ∩ σ = ∅

}
.

For codes, the link is typically not a simplicial complex, but because both linkσC and
linkσ �(C) have the same set of maximal elements,

�(linkσ C) = linkσ �(C).

Moreover, it is easy to see that if C = code(U , X), then for every non-empty σ ∈ �(C)

linkσ C = code
({Uj ∩Uσ } j∈[n]\σ ,Uσ

)
, where Uσ =

⋂

i∈σ

Ui .

Since any intersection of convex sets is convex, we thus observe

Lemma 2.4 If C is an open (or closed) convex code, then for any σ ∈ �(C), linkσ C
is also an open (or closed) convex code.

Lemma2.4 provides a framework for studying how local features of a code can obstruct
realization by open or closed convex sets. Consider those faces σ ∈ �(C)\C, which
we refer to as the simplicial violators of C. Suppose C is an open or closed convex
code realized as code(U , X), σ is a simplicial violator, and write Vj = Uj ∩Uσ . Then
the code linkσ C = code({Vi },Uσ ) is special in that the convex sets Vj cover another
convex set Uσ . This appearance of a good cover suggests a topological approach, via
a special case of the nerve lemma.

Lemma 2.5 (Nerve Lemma, [1,4]) For any finite cover V = {Vi }i∈[n] by convex sets
Vi ⊂ R

d that are either all open or all closed,5 the abstract simplicial complex

nerve(V)
def=

{
σ ⊆ [n] such that

⋂

i∈σ

Vi �= ∅

}
⊂ 2[n],

known as the nerve of the cover is homotopy equivalent to the underlying space
X = ⋃

i∈[n] Vi .

Since all convex sets are contractible, a simple corollary of Lemma 2.4 and the
nerve lemma is the following observation (which first appeared in [6]), that provides
a class of local obstructions to a code being open (or closed) convex.

Proposition 2.6 Let σ �= ∅ be a simplicial violator of a code C. If linkσ �(C) is not
a contractible simplicial complex, then C is not an open (or closed) convex code.

5 A formulation of the nerve lemmawhich applies to finite collections of closed, convex subsets of Euclidean
space appears in [4], and follows from [1, Thm. 10.7].
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Proof Assume the converse, i.e., C is open (or closed) convex and σ a simplicial
violator of C. Then the sets Uj ∩Uσ cover a convex and open (or closed) set Uσ , and
thus by the nerve lemma the simplicial complex

nerve
({Uj ∩Uσ } j∈[n]\σ

) = �(linkσ C) = linkσ �(C)

is contractible. 	

As an example, consider C = {∅, 1, 2, 3, 4, 123, 124}. Then σ = 12 is a simplicial

violator of C and linkσ C = {3, 4}. Since �(linkσ C) is not contractible, the code C is
not the code of an open (or closed) convex cover. This is perhaps the minimal example
of a code that cannot be realized by open or closed convex sets but can be realized
by an open cover by connected sets. In fact, all the codes which are neither open
nor closed convex on three neurons (these were classified in [3]) cannot be realized
by open (or closed) connected sets. This is because the only obstruction to open or
closed convexity is the “disconnection” of one set, similar to the case of the code
C = {∅, 1, 2, 13, 23}.

2.2 Do Truly“Non-local” Obstructions Via Nerve Lemma Exist?

The local obstructions to open or closed convexity in Proposition 2.6 equally apply
to any open or closed good cover, i.e., a cover where each non-empty intersection
Uσ = ⋂

i∈σ Ui is contractible. Since this property stems from applying the nerve
lemma to the cover of Uσ by the other contractible sets, it is natural to define a more
general non-local obstruction to convexity that also stems from the nerve lemma.

Definition 2.7 We say that a subset σ ⊆ [n] covers a code C ⊆ 2[n] if for every τ ∈ C,
τ ∩ σ �= ∅.

Note that any code covered by at least one set σ does not contain the empty set. More-
over, σ covers C = code

({Ui }i∈[n],
⋃

i∈[n] Ui
)
if and only if

⋃
i∈[n] Ui = ⋃

j∈σ Uj ;
that is, {Uj } j∈σ is a cover of

⋃
i∈[n] Ui .

Lemma 2.8 If there exist two non-empty subsets σ1, σ2 ⊆ [n] that both cover the code
C ⊆ 2[n], but the codes C∩σa

def= {τ ∩σa | τ ∈ C} ⊆ 2σa for a ∈ {1, 2} have simplicial
complexes �(C ∩ σa) that are not homotopy equivalent, then C is not a code of a
convex cover by open (or closed) sets in R

d .

This type of obstruction to open or closed convexity can be thought as non-local, as it
is conditioned on the homotopy type of a complex which covers the entire code. The
proof is a simple extension of the proof of Proposition 2.6, without foreknowledge of
the homotopy type of the covered space.

Proof Suppose C = code
(U ,

⋃
i∈[n] Ui

)
for some open (or closed) convex sets U . The

condition that each of the non-empty subsets σa covers the code C implies that that⋃
i∈[n] Ui = ⋃

j∈σa
U j for each a ∈ {1, 2}. Thus, by the nerve lemma, �(C) has the

same homotopy type as each of the complexes �(C ∩ σa), and in particular they are
homotopy equivalent to one another. This yields a contradiction. 	
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U5

U2
U1

U6

U3

U4

(a) An open convex realization of (1)

U2U1

U6

U5 U4

U3

(b) A closed good cover realization of (1)

Fig. 2 Two different realizations of the code C in (1). In both cases, the ambient space is X = R
2. (a) The

open convex realization consists of six open half-disks (or half-spaces), with opposite pairs sharing their
linear boundary components. Three-element codewords correspond to the six open “pie slices”, while two-
elementwords lie in the boundaries between these. (b) The closed good realization consists of closed annular
sections. Two-element codewords correspond to the interior of pairwise intersections, while three-element
codewords arise from the 1-dimensional triple intersections

While it is straightforward to produce combinatorial codes with such non-local
obstructions, every such code that we have considered6 also possesses a local obstruc-
tion for open or closed convexity. Perhaps the smallest such example is the code
C = {23, 14, 123}. This code meets the conditions of Lemma 2.8 with σ1 = {12}, and
σ2 = {34}, but also has a local obstruction for the simplicial violator σ = {1}. This
provides some evidence for the conjecture that any code C ⊂ 2[n] that has a non-local
obstruction to open or closed convexity of the type described in Lemma 2.8 must also
have a local obstruction.

2.3 The Difference Between Open and Closed Convex Codes

The homotopy type obstructions via the nerve lemma are obstructions to being a code
of a good cover (as opposed to convex sets) and equally apply to both open and closed
versions of theDefinition 1.1. However, it turns out that the open and the closed convex
codes are distinct classes of codes. Perhaps aminimal example of an open convex code
that is not closed convex is the code

C = {123, 126, 156, 456, 345, 234, 12, 16, 56, 45, 34, 23, ∅} ⊆ 2[6]. (1)

This code is realizable by an open convex cover (Fig. 2a) and also by an open or closed
good cover (Fig. 2b).

Lemma 2.9 The code (1) is not closed convex.

6 This included computer-assisted search among random codes.
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U1

U2

U4 U5

U3

(a) A closed convex realization of (2)

U1

U2

U4 U5

U3

(b) An open good cover realization of (2)

Fig. 3 Two different realizations of the code in (2). In both examples, the ambient space is the union of the
sets, and the four-element codeword is realized in the bottom-center in both cases

The proof is given in the Appendix (Sect. A.1). A different example,

C = {2345, 124, 135, 145, 14, 15, 24, 35, 45, 4, 5} ⊆ 2[5], (2)

was originally considered in [11], where it was proved that it is not open convex and
possesses a realization by a good open cover (Fig. 3b), thus does not have any “local
obstructions” to convexity. However, it turns out that this code is closed convex (see
a closed realization in Fig. 3a).

The examples in (1) and (2) show that open convex and closed convex are distinct
classes of codes. Moreover, they illustrate that one cannot generally “convert” an open
convex realization into a closed convex realization or vice versa by simply taking
closures or interiors of sets in a cover: realizations of these codes by convex sets
require fine-tuned intersections of boundaries, which results in a change in the code
when closures or interiors are taken. Nevertheless, it is intuitive that open and closed
versions of a “sufficiently non-degenerate” cover should yield the same code.

A natural candidate for such a condition would be that the sets in the cover U are
in general position, i.e., there exists ε > 0 such that any cover V = {Vi } whose
sets Vi are no further than ε from Ui in the Hausdorff distance,7 has the same code:
code(U , R

d) = code(V, R
d). However, being in general position is too strong a con-

dition; there are covers of interest that are not in general position, yet yield the same
code after taking the closure or interior. For example, in the proof of Lemma 3.1, the
“chipping away” process which introduces new codewords requires that the bound-
aries of the sets involved partially coincide in specified patterns. We wish to apply this
result to construct both open and closed realizations in the proof of Theorem 1.2, so
require the following weaker condition.

Definition 2.10 A cover U = {Ui }i∈[n], with Ui ⊆ R
d , is non-degenerate if the

following two conditions hold:

7 Recall that the Hausdorff distance between two subsets U and V of a Euclidean space is defined as

dH (U , V ) = max
{
sup
x∈U

{
inf
y∈V

∥∥x − y
∥∥}

, sup
y∈V

{
inf
x∈U

∥∥x − y
∥∥}}

.
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(i) For all σ ∈ code(U , R
d), the atoms AU

σ are top-dimensional, i.e., any non-empty
intersection with an open set B ⊆ R

d has non-empty interior:

B is open and AU
σ ∩ B �= ∅ �⇒ int(AU

σ ∩ B) �= ∅.

(ii) For all non-empty σ ⊆ [n], ⋂i∈σ ∂Ui ⊆ ∂
(⋂

i∈σ Ui
)
.

Note that if a cover U is open, convex and in general position, then it is non-degenerate
(see Lemma A.3 in the Appendix), while an open convex and non-degenerate cover
need not be in general position. On the other hand, a closed, convex cover in general
position consisting of sets need not be non-degenerate: take any of the setsUi to have
empty interior. We should also note that the two seemingly separate conditions (i) and
(ii) in Definition 2.10 are motivated by the following observation.

Lemma 2.11 Assume that U = {Ui } is a finite cover by convex sets. Then

(a) if all Ui are open andU satisfies Definition 2.10 (ii), then it also satisfies Definition
2.10 (i);

(b) if allUi are closed andU satisfiesDefinition 2.10 (i), then it also satisfiesDefinition
2.10 (ii).

The proof is given in the Appendix (Sect. A.2, Lemmas A.2 and A.4). Note that if
the sets Ui are open and convex, then Definition 2.10 (i) does not imply Definition
2.10 (ii), similarly if the sets Ui are closed and convex then Definition 2.10 (ii) does
not imply Definition 2.10 (i).8

For an open cover U = {Ui }, we denote by cl(U) the cover by the closures Vi =
cl(Ui ). Similarly, for a closed cover U = {Ui } we denote by int(U) the cover by the
interiors Vi = int(Ui ). Recall that if a set is convex, then both its closure and its
interior are convex.

Theorem 2.12 Assume that U = {Ui } is a convex and non-degenerate cover, then

Ui are open �⇒ code(U , R
d) = code(cl(U), R

d);
Ui are closed �⇒ code(U , R

d) = code(int(U), R
d).

That is, all codes which admit a realization by a convex, non-degenerate cover are
both open and closed convex.

The proof is given in the Appendix (Sect. A.3). This theorem guarantees that if an open
convex code is realizable by a non-degenerate cover, then it is also closed convex; simi-
larly if a closed convex code is realizable by a non-degenerate cover, then it is also open
convex. Non-degenerate covers are thus natural in the neuroscience context, where
receptive fields (i.e., the sets Ui ) should not change their code after taking closure or
interior, since such changes in code would be undetectable in the presence of standard

8 For example, the cover by the open convex sets U1 = {(x, y) ∈ R
2 | y > x2} and U2 = {(x, y) ∈

R
2 | y < −x2} satisfies Definition 2.10 (i), but does not satisfy Definition 2.10 (ii). Similarly, the closed

subsets of the real line, U1 = {x ≤ 0}, U2 = {x ≥ 0} satisfy Definition 2.10 (ii), but do not satisfy
Definition 2.10 (i).
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neuronal noise. This suggests that convex codes that arise from non-degenerate covers
should serve as the standard model for convex codes in neuroscience-related contexts.
Note that the existence of a non-degenerate convex cover realization is extrinsic in
that it is not defined in terms of the combinatorics of the code alone. A combinatorial
description of such codes is unknown at the time of this writing.

3 Monotonicity of Open Convex Codes

The set of all codes C ⊆ 2[n] with a prescribed simplicial complex K = �(C) forms
a poset. It is easy to see that if C is an open or closed convex code then its sub-codes
can be non-convex. For example any non-convex code is a sub-code of its simplicial
complex, and every simplicial complex is both an open and closed convex code (this
follows from Theorem 1.2 in Sect. 4). It turns out that open convexity is a monotone
increasing property.

Theorem 1.3 Assume that a code C ⊂ 2[n] is open convex. Then every code D
that satisfies C � D ⊆ �(C) is also open convex with open embedding dimension
odimD ≤ odim C + 1.

Note that the above bound on the embedding dimension is sharp. For example,
the open convex code C = {123, 12, 1} has embedding dimension odim C = 1, but
its simplicial complex D = �(C) has embedding dimension odimD = 2. To prove
this theorem we shall use the following lemma. Let M(C) denote the facets9 of the
simplicial complex �(C).

Lemma 3.1 Let U = {Ui } be an open convex cover in R
d , d ≥ 2, and X ⊆ R

d

with C = code(U , X). Assume that there exists an open Euclidean ball B ⊂ R
d such

that code({B ∩ Ui }, B ∩ X) = C, and for every α ∈ M(C), its atom has non-empty
intersection with the boundary of B: ∂B ∩ AU

α �= ∅. Then for every D such that
C � D ⊆ �(C), there exists an open convex cover V = {Vi } with Vi ⊆ Ui , such that
D = code(V, B ∩ X). Moreover, if the cover U is non-degenerate, then the cover V
can also be chosen to be non-degenerate.

The proof of this lemma is given in Sect. A.4. Intuitively, the reasonwhy this lemma
holds is that one can “chip away” small pieces from the ball B inside some atoms AU

α

to uncover only the atoms corresponding to the codewords in D\C.
Proof of Theorem 1.3 Assume that U is an open convex cover in R

d with C =
code(U , X). Since there are only finitely many codewords, there exist a radius r > 0
and an open Euclidean ball Bd

r ⊂ R
d , of radius r , centered at the origin, that satisfy

code({Bd
r ∩ Ui }, Bd

r ∩ X) = C. Let π : R
d+1 → R

d be any linear projection. Let

B
def= Bd+1

r denote the open ball in R
d+1, centered at the origin and of the same

radius r . Define Ũi = π−1(Ui ). By construction, Ũ = {Ũi } is an open, convex cover,
such that each of its atoms has non-empty intersection with the sphere ∂B. Moreover,
code({B ∩ Ũi }, B ∩π−1(X)) = C. Thus the conditions of Lemma 3.1 are satisfied for
the cover Ũ , and D is an open convex code with odimD ≤ odim C + 1. 	

9 The facets of a simplicial complex those faces which are maximal under inclusion.
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Note that the proof of Lemma 3.1 (see Sect. A.4) breaks down if one assumes that
the convex setsUi are closed. Moreover, it is currently not known if the monotonicity
property holds in the setting of the closed convex codes. The differences between the
open convex and the closed convex codes (described in the previous section) leave
enough room for either possibility.

4 Max Intersection-Complete Codes are Open and Closed Convex

Here we introduce max intersection-complete codes and prove that they are open
convex and closed convex. The open convexity of max intersection-complete codes
was first hypothesized in [2].

Definition 4.1 The intersection completion of a code C is the code that consists of all
non-empty intersections of codewords in C:

Ĉ =
{
σ

∣∣∣ σ =
⋂

ν∈C′
ν for some non-empty subcode C′ ⊆ C

}
.

Note that the intersection completion satisfies C ⊆ Ĉ ⊆ �(C).

Definition 4.2 Let C ⊂ 2[n] be a code, and denote byM(C) ⊂ C the subcode consisting
of all maximal codewords10 of C. A code C is said to be

• intersection-complete if Ĉ = C;
• max intersection-complete if M̂(C) ⊆ C.

Note that any simplicial complex (i.e., C = �(C)) is intersection-complete and any
intersection-complete code ismax intersection-complete. Intersection-complete codes
allow a simple construction of a closed convex realization that we describe in Sect. A.5
(see Lemma A.9). However, in order to prove that max intersection-complete codes
are both open and closed convex, we need the following.

Proposition 4.3 Let C ⊂ 2[n] be a code with k maximal elements. Then there exists an
open convex and non-degenerate cover U in d = (k − 1)-dimensional space whose
code is the intersection completion of the maximal elements in C: code(U , R

d) =
M̂(C).

Proof Denote the maximal codewords as M(C) = {σ1, σ2, . . . , σk}. If k = 1 this
statement is trivially true. Assume k ≥ 2 and consider a regular geometric (k − 1)-
simplex �k−1 in R

k−1 constructed by evenly spacing vertices [k] on the unit sphere
Sk−2 ⊆ R

k−1. Construct a collection of hyperplanes {Pa}ka=1 in R
k−1 by taking Pa

to be the plane through the facet of ∂�k−1 which does not contain vertex a. Denote
by H+

a the closed half-space containing the vertex a bounded by Pa and by H−
a the

complementary open half-space. Observe that this arrangement splitsR
k−1 into 2k −1

disjoint, non-empty, convex chambers

10 Equivalently, the facets of �(C).
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Hρ =
⋂

a∈ρ

H+
a ∩

⋂

b/∈ρ

H−
b ,

indexed by all non-empty11 subsets ρ ⊆ [k].
For every i ∈ [n] consider ρ(i)

def= {a ∈ [k] | σa 
 i} ⊂ [k], i.e., the collection
of indices of the maximal codewords σa that contain i , and construct a collection of
convex open sets U = {Ui }

Ui
def=

∐

ρ⊆ρ(i)

Hρ.

To show that the sets Ui are convex and open, observe that the above construction
implies that we have the disjoint unions

R
k−1 =

∐

ρ �=∅

Hρ and H+
b =

∐

ρ
b
Hρ,

thus

R
k−1\Ui =

( ∐

ρ �=∅

Hρ

)
\

( ∐

ρ⊆ρ(i)

Hρ

)
=

∐

ρ�ρ(i)

Hρ =
⋃

b/∈ρ(i)

(∐

ρ
b
Hρ

)
=

⋃

b/∈ρ(i)

H+
b .

Therefore, by de Morgan’s Law,

Ui = R
k−1 \

( ⋃

b/∈ρ(i)

H+
b

)
=

⋂

b/∈ρ(i)

H−
b . (3)

This is an intersection of open convex sets, and therefore open and convex. Note that
if ρ(i) = [k], this is an intersection over an empty index, and we interpret this set as
all of R

k−1.
To show that code(U , R

k−1) = M̂(C), observe that because the chambers of the
hyperplane arrangement satisfy Hρ ∩ Hν �= ∅ iff ρ = ν, we have the following
identities:

⋂

i∈σ

Ui =
⋂

i∈σ

∐

ρ⊆ρ(i)

Hρ =
∐

ν⊆⋂
i∈σ ρ(i)

Hν,

⋃

j /∈σ

Uj =
⋃

j /∈σ

∐

ν⊆ρ( j)

Hν .

Thus, for a subset σ ⊆ [n], the atom AU
σ of the cover U = {Ui } is non-empty if

and only if there exists a non-empty subset ν ⊆ [k] that satisfies the following two
conditions:

ν ⊆
⋂

i∈σ

ρ(i); (4)

11 The empty set is not included because under this definition, H∅ = ∅.
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ν � ρ( j), ∀ j /∈ σ. (5)

Note that the first condition (4) can be re-written as ∀a ∈ ν, ∀i ∈ σ, i ∈ σa , which is
equivalent to σ ⊆ ⋂

a∈ν σa . Similarly, the second condition (5) can be re-interpreted
as

∀ j /∈ σ, ∃ b ∈ ν, j /∈ σb ⇐⇒ [n]\σ ⊆
⋃

b∈ν

[n]\σb ⇐⇒ σ ⊇
⋂

b∈ν

σb.

Thus AU
σ �= ∅ ⇐⇒ σ = ⋂

b∈ν σb for some non-empty ν ⊆ [k]. This proves that
code({Ui }, R

k−1) = M̂(C).
Lastly, we show that the cover U is non-degenerate. By construction, the half-

spaces H−
a are open, convex and in general position. Thus Lemma A.3 guarantees

that the cover H = {H−
a } is non-degenerate and using Lemma A.5 in the Appendix

we conclude that for any non-empty τ ⊆ [k], ⋂a∈τ cl(H
−
a ) = cl

(⋂
a∈τ H−

a

)
. For any

non-empty subset σ ⊆ [n] we can combine this with the equality (3) to obtain

cl

(⋂

i∈σ

Ui

)
= cl

(⋂

i∈σ

⋂

a /∈ρ(i)

H−
a

)
=

⋂

i∈σ

⋂

a /∈ρ(i)

cl(H−
a )

=
⋂

i∈σ

cl

( ⋂

a /∈ρ(i)

H−
a

)
=

⋂

i∈σ

cl(Ui ).

Since Ui are open we obtain

⋂

i∈σ

∂Ui =
⋂

i∈σ

(
cl(Ui ) \Ui

) ⊆
⋂

i∈σ

(
cl(Ui ) \

⋂

i∈σ

Ui

)
=

(⋂

i∈σ

cl(Ui )

)
\

⋂

i∈σ

Ui

= cl

(⋂

i∈σ

Ui

)
\

⋂

i∈σ

Ui = ∂

(⋂

i∈σ

Ui

)
.

Therefore by Lemma 2.11 (a) the open and convex cover U is also non-degenerate. 	

As a corollary we obtain the main result of this section:

Theorem 1.2 Suppose C ⊂ 2[n] is a max intersection-complete code. Then C is both
open convex and closed convex with the embedding dimension d ≤ max {2, (k − 1)},
where k is the number of facets of the complex �(C).

Note that the case of k = 1, i.e., M(C) = {[n]}, was proved in [2].

Proof We first consider the case when the number of maximal codewords is k ≥ 3
and begin by constructing convex regions {Hρ}ρ∈2[k]\∅

and the open convex cover
{Ui }ni=1 as in the proof of Proposition 4.3 (see Fig. 4). In this cover, every atom that
corresponds to a maximal codeword is unbounded, therefore we can apply Lemma
3.1 using the open ball of radius 2 centered at the origin. This yields an open convex
and non-degenerate cover, thus by Theorem 2.12 the code C is both open convex and
closed convex.
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Fig. 4 The oriented hyperplane
arrangement {Pa} and its
chambers Hρ

1

2 3

H{1}

H{2} H{3}

H{1,2} H{1,3}

H{2,3}

H{1,2,3}

For the case k = 1, we note that the proof given in [2] is equivalent to assigning each
Ui to be the open ball of radius 2 centered at the origin inR

2, and applying Lemma 3.1
to modify this cover to produce codewords properly contained in the unique maximal
codeword. If k = 2, formally add γ = ∅ as an element of M(C) and apply the same
construction given above. As all intersections involving γ are empty, the sets Ui are
contained entirely in H−

γ , but no other modifications are necessary to perform the
construction as described in the case of k ≥ 3. 	


Appendix A: Supporting Proofs

A.1 Proof of Lemma 2.9

Proof Consider the code C in (1) and assume that there exists a closed convex cover
U = {Ui } in R

d , with code(U , R
d) = C. Without loss of generality, we can assume

that the Ui are compact.12 Because Ui are compact and convex one can pick points
x123, x345, and x156 in the closed atoms AU

123, A
U
345 and AU

156 respectively so that for
every a ∈ AU

123, its distance to the closed line segment M = x345x156 satisfies13

dist(a, M) ≥ dist(x123, M) �= 0, i.e., x123 minimizes the distance to the line segment
M . Moreover, the points x123, x156, x345 cannot be collinear. For the rest of this proof
we will consider only the convex hull of these three points (Fig. 5).

12 If Ui are not compact, then one can intersect them with a closed ball of large enough radius to obtain
the same code.
13 Because, U5 is convex and contains the endpoints of M , x123 /∈ M . Moreover, since both M and AU123
are compact, the function f (a) = dist(a, M) achieves its minimum on AU123.
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x156x345

x123

x126

x234

M

y123

Fig. 5 The convex hull of x123, x315, and x156. Points x345 ∈ AU345 and x156 ∈ AU156 can be arbitrarily

chosen. Point x123 ∈ AU123 is chosen to minimize the distance to the line segment M . A closer point

y123 ∈ AU123 is then constructed, providing the contradiction

Consider the closed line segment L = x123x156. Because U1 is convex, L ⊂ U1,
therefore the code (1) of the cover imposes that

L ⊂ AU
123 
 AU

12 
 AU
126 
 AU

16 
 AU
156.

Because each of the atoms above is contained in eitherU2 orU6, L ⊂ U2 ∪U6. Since
L is connected and the setsU2 ∩ L andU6∩ L are closed and non-empty, we conclude
thatU2 ∩U6 ∩ L ⊂ AU

126 must be non-empty, thus there exists a point x126 ∈ AU
126 ∩ L

that lies in the interior of L . By the same argument, there also exist points

x234 ∈ AU
234 in the interior of x123x345 ⊂ U3, covered by U2 and U4,

y123 ∈ AU
123 in the interior of x234x126 ⊂ U2, covered by U1 and U3,

and these points must lie on the interiors of their respective line segments (Fig. 5).
Finally we observe that because the point y123 ∈ AU

123 lies in the interior of a line
segment x234x126, it also lies in the interior of the closed triangle �(x123, x156, x345),
and thus d(y123, M) < d(x123, M). This yields a contradiction, since we chose x123 ∈
AU
123 to have the minimal distance to the line segment M . 	


A.2 Proofs of Lemmas, Related to the Non-degeneracy Condition

We shall need the following several lemmas. The following lemma is well-known
(see e.g., [7], exercises in Chapter 1), nevertheless we give its proof for the sake of
completeness.
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Lemma A.1 For any finite cover U = {Ui }ni=1 and a subset σ ⊆ [n], the following
hold:

cl

(⋃

i∈σ

Ui

)
=

⋃

i∈σ

cl(Ui ), (6)

cl

(⋂

i∈σ

Ui

)
⊆

⋂

i∈σ

cl(Ui ), (7)

int

(⋂

i∈σ

Ui

)
=

⋂

i∈σ

int(Ui ), (8)

int

(⋃

i∈σ

Ui

)
⊇

⋃

i∈σ

int(Ui ). (9)

Proof Observe that since Ui ⊆ cl(Ui ), we have
⋃

i∈σ Ui ⊆ ⋃
i∈σ cl(Ui ) and thus

cl
(⋃

i∈σ

Ui
) ⊆ cl

(⋃

i∈σ

cl(Ui )

)
=

⋃

i∈σ

cl(Ui ). (10)

Similarly, we find the inclusion (7). UsingUi ⊇ int(Ui ), one also obtains the inclusion
(9) and the inclusion

int

(⋂

i∈σ

Ui

)
⊇

⋂

i∈σ

int(Ui ). (11)

Observe that for any j ∈ σ , cl(Uj ) ⊆ cl
(⋃

i∈σ Ui
)
and int(Uj ) ⊇ int

(⋂
i∈σ Ui

)
,

thus we obtain
⋃

i∈σ cl(Ui ) ⊆ cl
(⋃

i∈σ Ui
)
and

⋂
i∈σ int(Ui ) ⊇ int

(⋂
i∈σ Ui

)
. These

combined with (10) and (11) yield (6) and (8) respectively. 	

Lemma A.2 (Lemma 2.11(a)) Suppose U = {Ui }i∈[n] is an open and convex cover
such that for every non-empty subset τ ⊆ [n], ⋂i∈τ ∂Ui ⊆ ∂

(⋂
i∈τ Ui

)
. Then every

atom of U is top-dimensional.

Proof Assume the converse, i.e., there exists non-empty σ ⊂ [n] and an open subset
B ⊆ R

d such that that AU
σ ∩ B �= ∅ and int(AU

σ ∩ B) = ∅. Let x ∈ AU
σ ∩ B, and

denote by τ ⊂ [n]\σ , the maximal subset such that x ∈ ⋂
j∈τ ∂Uj . Note that τ is

non-empty14 and therefore (using the assumption of the lemma) x ∈ ∂
(⋂

j∈τ Uj
)
.

Denote by ε0 > 0 the maximal radius such that the open ball Bε0(x) satisfies (a)
Bε0(x) ⊂ B ∩ ⋂

i∈σ Ui and (b) for every l /∈ (σ ∪ τ), Bε0(x) ∩Ul = ∅.
Observe that for every point y ∈ ⋂

j∈τ Uj and every ε ∈ (0, ε0), the point zε(y) =
x + ε

x−y
‖x−y‖ satisfies zε(y) /∈ Uj for every j /∈ σ . This is because for every j ∈ τ ,

the open set Uj is convex, thus if x ∈ ∂Uj , and y ∈ Uj , then zε(y) /∈ Uj , as in

14 If x /∈ ∂Uj ∀ j /∈ σ , then (becauseUi are open) there exists a small open ball B′ 
 x such that B′ ⊂ AUσ ,

thus int(AUσ ∩ B) ⊇ int(AUσ ∩ B ∩ B′) �= ∅, a contradiction.
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Fig. 6 Construction of points in
int(AUσ ∩ B) from the proof of
Lemma A.2

y

x

z (y)

Bε

ε

0(x)

Cx

j∈τ Uj

Fig. 6. We thus conclude that zε(y) ∈ AU
σ ∩ B. Since the intersection

⋂
j∈τ Uj is

open, the totality of all such points zε(y) form an open cone Cx ⊆ AU
σ ∩ B. Therefore

int(AU
σ ∩ B) ⊇ int(Cx ) �= ∅, a contradiction. 	


Lemma A.3 Suppose U is an open and convex cover in general position, then U is a
non-degenerate cover.

Proof AssumeU is in general position, open, convex, yet not non-degenerate. Then, by
LemmaA.2 there exists a non-empty subset σ ⊆ [n] so that⋂i∈σ ∂Ui � ∂

(⋂
i∈σ Ui

)
.

Let us choose x ∈ (⋂
i∈σ ∂Ui

)\(∂ ⋂
i∈σ Ui

)
. Suppose there exists z ∈ ⋂

i∈σ Ui ,
then the open line segment between x and z is contained in

⋂
i∈σ Ui , and thus x ∈

∂
(⋂

i∈σ Ui
)
, a contradiction. Therefore,

⋂
i∈σ Ui = ∅, and for every τ ⊇ σ , τ /∈

code(U , R
d).

For any ε > 0, define an open cover V(ε) = {Vi (ε)} by Vi (ε) = Ui ∪ Bε(x) for
i ∈ σ and Vj (ε) = Uj otherwise. Notice that

⋂
i∈σ Vi (ε) = Bε(x). Thus for any

ε > 0, there exists τ ⊇ σ with τ ∈ code(V(ε), R). Because x lies in the boundary
of Ui for each i ∈ σ , each Vi (ε) is no more than ε away from Ui w.r.t. the Hausdorff
distance. Therefore U is not in general position, a contradiction. 	

Lemma A.4 (Lemma 2.11(b)) Assume that every atom of the cover U = {Ui } is top-
dimensional, i.e., any non-empty intersection with an open set B ⊆ R

d has non-empty
interior, and the subsets Ui are closed and convex, then for any non-empty τ ⊆ [n],

⋂

i∈τ

∂Ui ⊆ ∂

(⋃

i∈τ

Ui

)
, (12)

⋂

i∈τ

∂Ui ⊆ ∂

(⋂

i∈τ

Ui

)
. (13)

Proof To show (12) assume the converse. Then there exist a point x ∈ (⋂
i∈τ ∂Ui

) ∩
int

(⋃
i∈τ Ui

)
at the interior, and an open ball B 
 x , such that B ⊆ ⋃

i∈τ Ui . First,
let us show that these assumptions imply that

B ∩
⋂

i∈τ

int(Ui ) = ∅. (14)

123



Discrete & Computational Geometry

Indeed, if there existed a point y ∈ B ∩ ⋂
i∈τ int(Ui ), then for every ε > 0 such that

z = x + ε(x − y) ∈ B and every i ∈ τ , z /∈ Ui by convexity of Ui .15 This implies
B �

⋃
i∈τ Ui , a contradiction, thus (14) holds.

Denote by ρ ⊇ τ the element of code({Ui }, R
d) such that x ∈ AU

ρ =⋂
i∈ρ Ui\⋃

j /∈ρ Uj . Because the sets Uj are closed, we can choose the open ball
B 
 x , that satisfies (14) so that it is disjoint from

⋃
j /∈ρ Uj . Therefore, using (8), we

obtain

int(B ∩ AU
ρ ) = int

(
B ∩

⋂

i∈ρ

Ui

)
⊆ int

(
B ∩

⋂

i∈τ

Ui

)
= B ∩

⋂

i∈τ

int(Ui ) = ∅.

Since x ∈ B ∩ AU
ρ , this contradicts the non-degeneracy of U , and thus finishes the

proof of (12).
To prove (13), consider x ∈ ⋂

i∈τ ∂Ui ⊆ ⋂
i∈τ Ui . Because of (12), any open

neighborhood O 
 x satisfies O �

⋃
i∈τ Ui and thus O �

⋂
i∈τ Ui . Therefore

x ∈ ∂
(⋂

i∈τ Ui
)
. 	


Note that if the condition that the sets Ui are convex is violated, then the conclusions
of the above lemma may not hold. For example, the sets U1 = {(x, y) ∈ R

2 | y ≤ x2}
and U2 = {(x, y) ∈ R

2 | y ≥ −x2} do not satisfy the inclusion (12).

Lemma A.5 If the cover U = {Ui }i∈[n] is non-degenerate, then for every non-empty
subset σ ⊆ [n]

Ui are closed and convex �⇒ int

(⋃

i∈σ

Ui

)
=

⋃

i∈σ

int(Ui ), (15)

Ui are open and convex �⇒ cl

(⋂

i∈σ

Ui

)
=

⋂

i∈σ

cl(Ui ). (16)

Proof First, we show that if the cover U is non-degenerate and closed convex, then

int

(⋃

i∈σ

Ui

)
⊆

⋃

i∈σ

int(Ui ). (17)

It suffices to show that if x /∈ ⋃
i∈σ int(Ui ), then x ∈ ∂

(⋃
i∈σ Ui

) ∪ (
R
d\ ⋃

i∈σ Ui
)
.

If x /∈ ⋃
i∈σ Ui , then this is true, thus we can assume that the set τ

def= {i ∈ σ | x ∈ Ui }
is non-empty, and since x /∈ ⋃

i∈σ int(Ui ), we conclude that x ∈ ⋂
i∈τ ∂Ui . Thus

by Lemma A.4 (12), x ∈ ∂
(⋃

i∈τ Ui
)
. Now observe that

⋃
i∈σ Ui = A ∪ B with

A
def= ⋃

i∈τ Ui and B
def= ⋃

j∈σ\τ Uj . Since x /∈ B, and B is closed, there exists an
open neighborhood O 
 x with O ∩ B = ∅. Therefore, using (8) we obtain that

O ∩ int(A) = int(O ∩ A) = int(O ∩ (A ∪ B)) = O ∩ int(A ∪ B),

15 This is because y ∈ int(Ui ), x ∈ ∂Ui and Ui is convex, thus for every ε > 0, z = x + ε(x − y) /∈ Ui .
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and thus we conclude

x ∈ ∂A ∩ O = (A\ int A) ∩ O = ((A ∪ B)\(int(A ∪ B) ∩ O)) ∩ O

= ∂(A ∪ B) ∩ O.

Thus, x ∈ ∂(A∪ B) = ∂
(⋃

i∈σ Ui
)
, which proves (17). Combined with (9) in Lemma

A.1, this finishes the proof of (15).
To prove (16), taking into account (7), we need to show that cl

(⋂
i∈σ Ui

) ⊇⋂
i∈σ cl(Ui ). Assume the converse, then there exists x ∈ ⋂

i∈σ cl(Ui ) and r > 0
such that

∀ε ∈ (0, r) the open ε-ball Bε(x) satisfies Bε(x) ∩
⋂

i∈σ

Ui = ∅. (18)

Denote τ
def= {i ∈ σ | x ∈ ∂Ui }; we can assume that τ is non-empty (otherwise, x ∈

cl
(⋂

i∈σ Ui
)
). Using the condition (ii) ofDefinition 2.10we conclude x ∈ ⋂

i∈τ ∂Ui ⊆
∂
(⋂

i∈τ Ui
)
, thus for every open ε-ball Bε(x) centered at x , Bε(x) ∩ ⋂

i∈τ Ui �=
∅. Because x ∈ ⋂

j∈σ\τ Uj , and Uj are open, for a sufficiently small ε, Bε(x) ⊂⋂
j∈σ\τ Uj . Thus Bε(x) ∩ ⋂

i∈σ Ui �= ∅, which contradicts (18). This finishes the
proof of (16). 	


A.3 Proof of Theorem 2.12

Proof First, we show that if U is open convex and non-degenerate, then the cover of

closures cl(U)
def= {cl(Ui )} has the same code as U . Let AU

σ denote an atom of U and

Acl(U)
σ denote the corresponding atom of cl(U). If AU

σ = ∅, then using (16) and (6)
we conclude that

⋂

i∈σ

Ui ⊆
⋃

j /∈σ

Uj �⇒ cl

(⋂

i∈σ

Ui

)
⊆ cl

(⋃

j /∈σ

Uj

)
�⇒

⋂

i∈σ

cl(Ui ) ⊆
⋃

j /∈σ

cl(Uj ),

and thus Acl(U)
σ = ∅. Therefore, code(cl(U)) ⊆ code(U). On the other hand, using

(6) we obtain

Acl(U)
σ =

⋂

i∈σ

cl(Ui ) \
⋃

j /∈σ

cl(Uj ) =
⋂

i∈σ

cl(Ui ) \ cl
(⋃

j /∈σ

Uj

)

=
(⋂

i∈σ

cl(Ui ) \
⋃

j /∈σ

Uj

)
\

(
cl

(⋃

j /∈σ

Uj

)
\

⋃

j /∈σ

Uj

)
⊇ AU

σ \ ∂

(⋃

j /∈σ

Uj

)
.

Thus, if AU
σ is non-empty, since it is top-dimensional while ∂

(⋃
i /∈σ Ui

)
is of codi-

mension one, AU
σ � ∂

(⋃
j /∈σ Uj

)
, implying Acl(U)

σ �= ∅, and thus, code(U) =
code(cl(U)).
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Next, we show that if U is closed convex and non-degenerate, then the cover of
the interiors int(U) = {intUj } has the same code as U . Let AU

σ be an atom of U and

Aint(U)
σ be the corresponding atom of int(U). If AU

σ = ∅, then using (8) and (15) we
conclude that

⋂

i∈σ

Ui ⊆
⋃

j /∈σ

Uj �⇒ int

(⋂

i∈σ

Ui

)
⊆ int

(⋃

j /∈σ

Uj

)

�⇒
⋂

i∈σ

int(Ui ) ⊆
⋃

j /∈σ

int(Uj ),

which implies Aint(U)
σ = ∅. Therefore, code(int(U)) ⊆ code(U). On the other hand,

using (8) we obtain

Aint(U)
σ =

⋂

i∈σ

int(Ui ) \
⋃

j /∈σ

int(Uj ) ⊃ int

(⋂

i∈σ

Ui

)
\

⋃

j /∈σ

Uj

=
(⋂

i∈σ

Ui \
⋃

j /∈σ

Uj

)
\ ∂

(⋂

i∈σ

Ui

)
= AU

σ \ ∂

(⋂

i∈σ

Ui

)
.

Thus, if AU
σ is non-empty, since it is top-dimensional while ∂

(⋂
i∈σ Ai

)
is of codi-

mension one, Aint(U)
σ �= ∅. Therefore, code(U) = code(int(U)). 	


A.4 Proof of Lemma 3.1

In order to prove Lemma 3.1 we will need the following two lemmas.

Lemma A.6 Let W = {Wi } be a collection of sets, Wi ⊆ X, and C = code(W, X).
Assume that Q is a proper subset of some atom of W , i.e., ∅ �= Q � AW

α , for a
non-empty α ∈ C. Then for any σ0 � α, the cover V = {Vi } by the sets

Vi =
{
Wi , if i ∈ σ0,

Wi\Q, if i /∈ σ0
(19)

adds the codeword σ0 to the original code, i.e., code(V, X) = code(W, X) ∪ {σ0}.
Proof Since Q � AW

α , code({Vi ∩ (X\Q)}, X\Q) = code(W, X). Moreover,
because σ0 ⊂ α, code({Vi ∩ Q}, Q) = {σ0} by construction. Finally, observe that
if X = Y 
 Z , then code(V, X) = code({Vi ∩ Y },Y ) ∪ code({Vi ∩ Z}, Z), therefore
we obtain

code(V, X) = code({Vi ∩(X\Q)}, X\Q)∪code({Vi ∩Q}, Q) = code(W, X)∪{σ0}.
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Fig. 7 The oriented half space
P+ is chosen to intersect the
ball B inside AUα

Ui ∩ B

U j ∩ B

AUα ∩ B

P+

B

Recall that M(C) ⊂ C denotes the set of maximal codewords of C. A subset A ∩ B
of a topological space is called relatively open in B if it is an open set in the induced
topology of the subset B.

Lemma A.7 Let U = {Ui } be an open convex cover in R
d , d ≥ 2, and X ⊆ R

d

with C = code(U , X). Assume that there exists an open Euclidean ball B ⊂ R
d

such that code({B ∩ Ui }, B ∩ X) = C, and for every maximal set α ∈ M(C), the set
∂B ∩ cl

(⋂
i∈α Ui

)
is non-empty and is relatively open in ∂B. Then for any simplicial

violator σ0 ∈ �(C)\C, there exists an open convex cover V = {Vi } with Vi ⊆ Ui , so
that code(V, B ∩ X) = C ∪ σ0, and the cover V satisfies the same condition above
with the same open ball B. Moreover, if the cover U = {Ui } is non-degenerate, then
the cover V can also be chosen to be non-degenerate.

Proof Choose a facet α ∈ M(C) such that α � σ0. Because α is a facet of �(C), the
atom AU

α = ⋂
i∈α Ui is convex open and (by assumption) has a non-empty relatively

open intersection with the Euclidean sphere ∂B. This implies that we can always
select an oriented and closed half-space P+ ⊂ R

d such that P+ ∩ B ⊂ AU
α , and

(AU
α ∩ B)\P+ �= ∅ has relatively open intersection with the sphere ∂B (see Fig. 7).

We define two open covers,W = {Wi }, withWi
def= Ui ∩ B and V = {Vi } via (19),

with Q = P+ ∩ B. We thus can use Lemma A.6, and conclude that code(V, X ∩ B) =
code({B ∩Ui }, B ∩ X) ∪ σ0 = C ∪ σ0. Note that by construction the sets Vi are open
and convex, moreover, the cover V automatically satisfies the same condition on the
atoms of facets of �(C).

Finally, if U is non-degenerate, then V is also non-degenerate. Indeed, because AU
α

is open, the only two atoms that were changed, AV
α = (AU

α ∩ B)\P+ and AV
σ0

=
P+ ∩ B are also top-dimensional. Moreover, since the only new pieces of boundaries
of Vi ⊆ Ui are introduced on the chord ∂P+∩B and on the sphere ∂B, if the condition
that for all σ ⊆ [n], ⋂i∈σ ∂Ui ⊆ ∂

(⋂
i∈σ Ui

)
holds then the same condition should

hold for the sets Vi . 	

A consecutive application of the above lemma to all the codewords inD\C for any

supra-code D with the same simplicial complex yields Lemma 3.1.

Proof of Lemma 3.1 Let U = {Ui } be an open convex cover inR
d , d ≥ 2, and X ⊆ R

d

with code(U , X) = C. Assume that there exists an open Euclidean ball B ⊂ R
d such

that code({B ∩ Ui }, B ∩ X) = C, and for every α ∈ M(C), its atom has non-empty
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intersection with ∂B. Let C � D ⊆ �(C) and denote D\C = {σ1, σ2, . . . , σl}. Let
σ1 � α ∈ M(C). Because α ∈ M(C), AU

α = ∩i∈αUi is open, and thus ∂B ∩ cl(AU
α )

is relatively open in ∂B. We can now apply Lemma A.7 to the “missing” codeword
σ1, and obtain a new cover V(1) that again satisfies the condition of Lemma A.7.
Consecutively applying Lemma A.7 with σ0 = σ j , j = 2, 3, . . . , l, we obtain covers

V( j), so that the last cover, V def= V(l) is the desired cover of Lemma 3.1. 	


A.5 A Closed Convex Realization for an Intersection-Complete Code

Here we provide an explicit construction of a closed convex cover of an intersection-
complete code. Intersection-complete codes are max intersection-complete, and thus
Theorem1.2 ensures that intersection-complete codes are both open convex and closed
convex. Nevertheless, a different construction below may be useful for applications
due to its simplicity.

Definition A.8 The potential cover of the codeC, is a collectionV = {Vi }i∈[n] of closed
convex sets Vi ⊂ R

|C|, defined as follows. For each non-empty codeword σ ∈ C let
eσ be a unit vector in R

|C| so that {eσ } is a basis for R
|C|. For each i ∈ [n], we define

Vi as the convex hull

Vi
def= conv{eσ | σ ∈ C, σ 
 i}.

Since this is a cover by convex closed sets, the code of the potential cover is closed
convex. Note however, that this cover is not non-degenerate (Definition 2.10), and
cannot be easily extended to an open convex cover.

Lemma A.9 Let V = {Vi } denote the potential cover of C, and X
def= conv{eσ | σ ∈

C, σ �= ∅}. Then the code of the potential cover of C is the intersection completion of
that code: code(V, X) = Ĉ.
Proof Note that because the vectors eσ are linearly independent,

∅ /∈ Ĉ ⇐⇒ ∃ i ∈ [n], Vi = X ⇐⇒ X =
⋃

i∈[n]
Vi ⇐⇒ ∅ /∈ code(V, X).

Moreover, ⋂

i∈σ

Vi = conv{eτ | τ ∈ C, τ ⊇ σ }, (20)

in particular, code(V, X) ⊆ �(C). To show that code(V, X) ⊆ Ĉ, assume that a
non-empty σ ∈ code(V, X), i.e., AV

σ = (⋂
i∈σ Vi

)\⋃
j /∈σ Vj is non-empty. If there

exists an index j ∈ (⋂
σ⊆τ∈C τ

)\σ, then by (20),
⋂

i∈σ Vi ⊂ Vj , which contradicts
σ ∈ code(V, X). Hence σ = ⋂

C
τ⊇σ τ ∈ Ĉ. Conversely, assume that a non-empty

σ ∈ Ĉ and let σ1, . . . , σk ∈ C be code elements such that σ = ⋂k
�=1 σ�. Then the

point 1
k

∑k
�=1 eσ�

∈ (⋂
i∈σ Vi

)\⋃
j /∈σ Vj . Hence σ ∈ code(V, X). 	


An immediate corollary is that any intersection-complete code is a closed convex code.
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