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Abstract. By far the most important class of pseudo-groups, both for theory and
in essentially all applications, are the Lie pseudo-groups. In this paper we propose a
definition of the Lie completion of a regular pseudo-group, and establish some of its basic
properties. In particular, a pseudo-group and its Lie completion have exactly the same
differential invariants and invariant differential forms. Thus, for practical purposes, one
can exclusively work within the category of Lie pseudo-groups.

1. Introduction

In Lie’s seminal work on transformation groups, the finite- and infinite-dimen-
sional cases were always treated on essentially the same footing. However, through
subsequent research, the two theories came to evolve in radically different ways. In
the early twentieth century, finite-dimensional actions were codified and thereby
well understood through the general theory of Lie groups. In contrast, the theory
of infinite-dimensional pseudo-groups remains in a surprisingly primitive state of
development, being characterized by Weil [20] as an “almost impenetrable jungle”.
The crux of the difficulty stems from the fact that there is, to date, no geometric
object that adequately represents the abstract pseudo-group, and so pseudo-groups
remain wedded to their individual actions on geometric spaces. A second compli-
cation is the distinction between a general pseudo-group and the more important,
but more restrictive, concept of a Lie pseudo-group. The axioms for plain pseudo-
groups are straightforwardly adapted from those of local transformation groups,
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while a Lie pseudo-group must be realized as the space of solutions to a suitable
system of differential equations— its determining equations —a nongeometric re-
quirement that serves to complicate the theoretical foundations of the subject. An
important question, thus, is the precise role played by the analytic requirement
that the pseudo-group transformations satisfy a system of differential equations.

The purpose of this paper is to describe a procedure for “completing” a suf-
ficiently regular pseudo-group into an essentially equivalent Lie pseudo-group, as
first outlined in [5]. The Lie completion of a pseudo-group is characterized as the
smallest Lie pseudo-group that contains it. The existence of the completion fol-
lows from a direct construction of the determining system of differential equations
satisfied by the pseudo-group’s transformations, and the Lie completion contains
all the solutions to these determining equations. As an immediate consequence
of the construction, the original pseudo-group and its Lie completion are found
to possess exactly the same differential invariants and invariant differential forms.
In summary, the main conclusion is that, as far as local geometry and analysis is
concerned, one can, without any appreciable loss of generality, always assume that
a (suitably regular) pseudo-group satisfies the additional conditions that it be a
Lie pseudo-group.

Acknowledgments. We would like to thank Juha Pohjanpelto and the anony-
mous referees for helpful remarks that served to improve the paper.

2. Pseudo-groups

Let M be an m-dimensional manifold. Throughout this paper we adopt the
definition that a local diffeomorphism φ : M → M is a differentiable map defined
on an open set U = dom φ ⊂ M , with the property that it is a diffeomorphism
onto its image.

We now recall the basic definition of a pseudo-group [12], [17]. To avoid tech-
nical complications, we will be working in the analytic category. Adapting the
constructions to smooth (C∞) pseudo-groups requires some additional care, as
noted below.

Definition 1. Let M be an analytic manifold. A collection G of local analytic
diffeomorphisms of M is a pseudo-group if:

(1) G is closed under restriction: if U ⊂M is an open set and φ : U →M is in
G, then so is φ |V for all open V ⊂ U .

(2) Elements of G can be pieced together: if Uν ⊂ M are open subsets, U =⋃
ν Uν , and φ : U →M is a local diffeomorphism with φ |Uν ∈ G for all ν,

then φ ∈ G.
(3) G contains the identity diffeomorphism: 1(z) = z for all z ∈ M = dom 1.
(4) G is closed under composition: if φ : U → M and ψ : V → M are two

diffeomorphisms belonging to G, and φ(U) ⊂ V , then ψ ◦φ ∈ G.
(5) G is closed under inverse: if φ : U → M is in G, then φ−1 : φ(U) → M is

also in G.

Example 1. The collection D = D(M) of local analytic diffeomorphisms of an
analytic manifold M is the simplest example of a pseudo-group. All others are
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sub-pseudo-groups of the diffeomorphism pseudo-group. Well-studied examples in-
clude analytic (local) actions of finite-dimensional Lie groups; the pseudo-group of
symplectomorphisms, that is, canonical transformations of a symplectic manifold
[9]; foliation-preserving transformation groups [4]; and a wide range of symmetry
pseudo-groups of differential equations [10].

Example 2. The collection Gz0 ⊂ D of local analytic diffeomorphisms ofM which
fix a point z0 ∈ M , i.e., satisfy φ(z0) = z0, is a pseudo-group. More generally, if
S ⊂ M is any subset, its isotropy subgroup GS = {φ ∈ D |φ(z) = z for all z ∈ S}
forms a pseudo-group.

Example 3. The diagonal action of the one-dimensional diffeomorphism pseudo-
group D(R) on R2, consists of all transformations of the form

X = f(x), Y = f(y), (1)

in which f ∈ D(R) is a local analytic diffeomorphism. It can be straightforwardly
checked that this defines a pseudo-group, which, for later reference, we denote by
Gd.

As first emphasized by Ehresmann [3], the analysis of pseudo-groups rests on
the groupoid formed by their jets. The ur-example is the diffeomorphism pseudo-
group D = D(M). For each 0 ≤ n ≤ ∞, let D(n) ⊂ Jn = Jn(M,M) denote the
bundle formed by the nth-order jets, which, by the Inverse Function Theorem, is
characterized by the nonvanishing of the Jacobian determinant. The nth-order
jet of a local diffemorphism φ ∈ D is denoted by jnφ ⊂ D(n). For k ≤ n, let
πn
k : D

(n) → D(k) denote the standard projection. The diffeomorphism jet bundle
D(n) carries the structure of a Lie groupoid [8], whose multiplication is provided
by algebraic composition of Taylor series (when defined).

Local coordinates (z, Z(n)) on D(n) are provided by a system of source coor-
dinates z = (z1, . . . , zm) on M , target coordinates Z = (Z1, . . . , Zm) also on M ,
and jet coordinates Zb

A representing the partial derivatives ∂kφb(z)/∂za1 · · · ∂zak ,
with 1 ≤ b, a1, . . . , ak ≤ m, 1 ≤ k ≤ n, of the local diffeomorphism Z = φ(z). In
what follows we will consistently follow Cartan’s convention to employ lowercase
letters i z, x, u, . . ., for the source coordinates and uppercase letters, Z,X,U, . . .,
for the corresponding target coordinates of a pseudo-group transformation. The
source and target projections σ, τ : D(n) → M are given by σ(z, Z(n)) = z and
τ(z, Z(n)) = Z, respectively.

Given a sub-pseudo-group G ⊂ D, let G(n) ⊂ D(n) denote the corresponding
subgroupoid consisting of the nth-order jets of its local diffeomorphisms. To avoid
extra complications, we will impose the following regularity condition.

Definition 2. A pseudo-group G ⊂ D is called regular of order n? ≥ 1 if, for all
finite n ≥ n?, the pseudo-group jets σ : G(n) → M form an embedded subbundle
of σ : D(n) → M and, furthermore, the projection πn+1

n : G(n+1) → G(n) is a
fibration.

The isotropy pseudo-group Gz0 of Example 2 fails to be regular since its jet
fibers over the point z0 are of lower dimension, i.e., singular. Similarly, the more
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general isotropy pseudo-group GS has singular fibers when S ⊂ M is discrete.
On the other hand, if the set S has a nonempty interior, then its analytic isotropy
pseudo-group just consists of the identity transformation, and so is trivially regular.
(Although the corresponding smooth isotropy pseudo-group may be nonregular.)
The diagonal pseudo-group Gd in Example 3 is also not regular since the jet fibers
over the line D = {x = y} are singular. On the other hand, Gd does act regularly
on the complement M = R2 \D.

From here on we will assume, by possibly discarding the subset belonging to
the singular jet fibers, that all pseudo-group actions are regular.

3. Lie pseudo-groups

Lie pseudo-groups are distinguished by the additional property that their trans-
formations form the space of solutions to a suitable system of differential equations.
The literature contains several versions of the appropriate technical hypotheses,
and we adopt a streamlined definition that accords with our restriction to the
analytic category. The connections with more standard definitions, e.g., [12], [17],
will be commented on below.

Definition 3. An analytic pseudo-group G ⊂ D is called a Lie pseudo-group if
G is regular of order n? ≥ 1 and, moreover, every local diffeomorphism φ ∈ D
satisfying jn?φ ⊂ G(n?) belongs to the pseudo-group: φ ∈ G. The minimal value of
n? is called the order of the Lie pseudo-group.

The regularity condition implies that, in local coordinates, the jet subbundle
G(n?) ⊂ D(n?) can be described by a system of n?th-order differential equations

F (n?)(z, Z(n?)) = 0, (2)

called the determining system of the pseudo-group1. The fact that G(n?) is precisely
the set of jets of pseudo-group elements implies that the determining system (2)

is automatically locally solvable [10], meaning that, for every jet (z0, Z
(n?)
0 ) ∈

G(n?), there exists a solution Z = φ(z) which has this jet at the point z0, i.e.,

jn?φ|z0 = (z0, Z
(n?)
0 ). The key condition that distinguishes a Lie pseudo-group

is the requirement that every solution to the determining system belongs to the
pseudo-group.

Example 4. Consider the diagonal pseudo-group Gd of Example 3, acting on the
off-diagonal subsetM = {(x, y) |x 6= y} viaX = f(x), Y = f(y). Its jet subbundle

G
(1)
d ⊂ D(1) is defined by the first-order determining system

Xy = Yx = 0, (3)

along with the inequalitiesXx, Yy 6= 0 guaranteeing that (x, y,X, Y,Xx, Xy, Yx, Yy)

is a local diffeomorphism jet. The higher-order subbundles G
(n)
d are obtained by

1Bear in mind that the regularity assumptions place additional regularity conditions
on the nature of the determining partial differential equations.
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prolongation (differentiation) of the first-order determining system (3); for exam-

ple, G
(2)
d ⊂ D(2) is defined by the second-order determining system

Xy = Yx = 0, Xxy = Xyy = Yxx = Yxy = 0. (4)

Even though it acts regularly away from the diagonal, Gd does not form a Lie
pseudo-group. Indeed, the general solution to the determining system (3) (and its
higher-order counterparts) consists of all transformations of the form

X = f(x), Y = g(y), (5)

where f, g ∈ D(R) are arbitrary local diffeomorphisms. Clearly, (5) defines a larger
pseudo-group, denoted Gd ) Gd. By construction, Gd has the same determining

system: G
(n)
d = G

(n)
d for all n. Therefore, every solution to its determining system

has the form (5). As a result, Gd satisfies the conditions of Definition 3, and is a
Lie pseudo-group. We will later identify Gd as the Lie completion of the non-Lie
pseudo-group Gd.

In most treatments of the subject, the definition of a Lie pseudo-group imposes
an additional integrability condition on its determining system. We will argue
that, in the analytic category, the determining system is automatically integrable
by construction. On the other hand, in the smooth category, the possibility of
Lewy-type counterexamples to the required existence theorems [10] appears to
necessitate retaining an explicit integrability condition in the definition.

Recall that the kth prolongation of a system of differential equations is defined
as the system obtained by appending all derivatives of the original equations of
orders ≤ k, [1], [16]. We write pr(k) for the prolongation operation.

Definition 4. Let ∆(n?) ⊂ Jn
?

be a system of differential equations of order n?

as in (2). For n > n?, we set ∆(n) = pr(n−n?)∆(n?) ⊂ Jn to be the prolonged
system of order n. Then ∆(n?) is called formally integrable if πn+1

n ∆(n+1) = ∆(n)

for all n ≥ n?.

Loosely speaking, a system is formally integrable if every jet belonging to ∆(n?)

admits a formal power series solution of the infinitely prolonged system. This has
the implication that the system does not admit integrability conditions stemming
from cross differentiation of the equations or, more precisely, by the processes of
prolongation and jet projection. Involutivity is a more technical requirement and,
for brevity, we refer the reader to [1], [11], [15], [16] for the details. While formal
integrability is more general, it cannot be checked by a finite algorithm, and only
produces formal solutions. On the other hand, involutivity can be checked algo-
rithmically and, moreover, the Cartan–Kähler theorem guarantees the existence
of genuine solutions to an involutive analytic system.

Thanks to several fundamental results in the theory of overdetermined systems
of partial differential equations, the integrability/involutivity of the determining
system of an analytic Lie pseudo-group is, in fact, an immediate consequence of
its regularity. The argument proceeds as follows. Let G be a Lie pseudo-group
of order n?. By regularity and analyticity, the Cartan–Kuranishi theorem, [7],
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[16], implies that some projection/prolongation G̃(n) ≡ πk
n pr(k−n?)G(n?) ⊂ D(n),

k ≥ n ≥ n?, is involutive. We claim that G̃(n) = G(n). Indeed, any solution φ ∈ G
to the determining equations G(n?) is automatically a solution to any prolongation
and projection thereof, and hence satisfies the involutive system G̃(n). But G(n) is,
by definition, the set of all solution jets of order n, and thus G(n) ⊂ G̃(n). On the
other hand, any solution to G̃(n) is necessarily a solution to the original system
G(n?) and thus, since G is, by assumption, a Lie pseudo-group, an element of G.
We conclude that G̃(n) ⊂ G(n), which establishes our claim. We have thus proved
the following result, that justifies removing any integrability requirement from our
definition of a (regular) analytic Lie pseudo-group.

Theorem 1. The determining equations of a regular analytic Lie pseudo-group of

order n? are necessarily formally integrable and, in fact, involutive at some order

n ≥ n?.

In contrast, there are no comparable existence theorems for formally integrable
or involutive systems of partial differential equations in the smooth category. In-
deed, it is conceivable that a C∞ system of partial differential equations be locally
solvable and yet not formally integrable due to some “hidden integrability condi-
tion” satisfied by its higher-order jets that cannot be deduced by prolongation. In
more detail, it may be possible that a smooth pseudo-group G satisfy the conditions
of Definition 3, and yet, for some n > n?, the nth-order pseudo-group jets form
a strict subbundle of the prolonged determining system: G(n) ( pr(n−n?)G(n?).
In other words, some of the differential equations required to specify G(n) do not

result from differentiating its determining system. Finding such an example—or,
alternatively, proving that such does not exist— is a challenging problem.

4. Completion

We are now in a position to present our definition of the Lie completion of a
regular pseudo-group action and prove the main result.

Definition 5. Let G be a regular pseudo-group of order n?. Then its Lie comple-

tion G ⊃ G is defined as the space of all analytic solutions φ of the determining
system G(n?) that determine one-to-one maps on their domain of definition.

Since G(n?) ⊂ D(n?), the Inverse Function Theorem implies that any solution
φ to G(n?) is a local diffeomorphism when restricted to a sufficiently small open
subset of its domain. Thus, all solutions to G(n?) are one-to-one maps on suitable
open subsets of their domains of definition, and these restrictions will all belong
to the completion G. While an immediate consequence of Definition 5, the next
lemma is fundamental for proving the main properties of Lie completion.

Lemma 2. Let G be a regular pseudo-group of order n? and n ≥ n?. Then, for

any element φ ∈ G of the completion and z ∈ dom φ a point in its domain, there

exists a pseudo-group element φ ∈ G (depending on both z and n) that has the

same nth-order jet: jnφ |z = jnφ |z.

In simpler terms, the Taylor polynomial of degree n of any element of the
completion is also the Taylor polynomial of an element of the original pseudo-
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group. Note that this holds at arbitrary finite order n ≥ n?, but not necessarily
at order n = ∞—the level of Taylor series.

Theorem 3. The Lie completion G of a regular pseudo-group G is a Lie pseudo-

group. Moreover, if G is itself a Lie pseudo-group then G = G.

Proof. We begin by showing that G is indeed a pseudo-group. To verify the pseudo-
group axioms in Definition 1 for G, we first note that the restriction and piecing
together properties are immediate. Since the identity map belongs to G, it auto-
matically belongs to G. Next, to verify closure of G under composition, suppose
φ, ψ ∈ G. Applying Lemma 2, given z ∈ dom φ such that φ(z) ∈ dom ψ, choose
φ, ψ ∈ G (depending on the point z and the order n ≥ n?) such that

jnφ |z = jnφ |z, jnψ|φ(z) = jnψ|φ(z), (6)

noting that φ(z) = φ(z) thanks to the first equality. Because G is closed under
composition,

jn(ψ ◦φ)|z = jnψ|φ(z) ◦ jnφ |z = jnψ|φ(z) ◦ jnφ |z = jn(ψ ◦φ)|z ∈ G(n) |z .

Since the point z is arbitrary, setting n = n?, we deduce that ψ ◦φ is a solution to
the determining system G(n?), and hence belongs to G. A similar argument proves
closure under inversion. Let φ ∈ G and, for z ∈ dom φ, choose φ ∈ G satisfying
the first condition in (6). Noting that

jnφ
−1|φ(z) ◦ jnφ |z = jn1|z = jnφ

−1|φ(z) ◦ jnφ |z , (7)

we must have jnφ
−1|φ(z) = jnφ

−1|φ(z) ∈ G(n) |φ(z). Again, as z is arbitrary, for

n = n?, this implies that φ−1 is a solution to the determining system G(n?), and
hence belongs to G. We conclude that G is indeed a pseudo-group.

Obviously, by construction, every order n? jet of a diffeomorphism in G coincides
with the n? jet of some diffeomorphism in G, so G(n?) = G(n?). Moreover, every
solution to the determining system G(n?) = G(n?) belongs to G, and hence G is
indeed a Lie pseudo-group. The final statement of the theorem is an immediate
consequence of the definition of Lie completion. �

There is another natural way of defining the completion of a pseudo-group based
on the partial ordering provided by inclusion of pseudo-groups.

Theorem 4. The Lie completion G of a regular pseudo-group G ⊂ D of order n?

is the smallest Lie pseudo-group satisfying G ⊂ G ⊂ D. In other words,

G =
⋂

H⊃G

H, (8)

where the intersection is taken over all Lie pseudo-groups G ⊂ H ⊂ D of order

n ≤ n?.
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Proof. Let I denote the right-hand side of (8). Since the Lie completion G ⊃ G
is a Lie pseudo-group, it is one of the H’s appearing in the intersection I. Thus,
trivially, I ⊂ G.

On the other hand, suppose H ⊃ G is a Lie pseudo-group of order n ≤ n?. Our
task is to prove that, given any φ ∈ G, then φ ∈ H. Indeed, if this is true, then
G ⊂ H. Since this holds for every H appearing in (8), the same holds for the
intersection, G ⊂ I, which serves to complete the proof.

To establish the preceding claim, we apply Lemma 2: for each z ∈ dom φ there
exists a φ ∈ G such that

jnφ |z = jnφ |z ∈ H(n)|z since φ ∈ G ⊂ H.

(Keep in mind that φ will depend on z as well as the jet jnφ |z.) Since this holds
for all z ∈ dom φ, we conclude that φ is a solution to the determining equations
for H. But H is, by assumption, a Lie pseudo-group, and hence φ ∈ H, proving
the result. �

Example 5. A simple but revealing example is provided by the pseudo-group Gδ

acting on R4 whose transformations have the form

X = f(x), Y = f(y), U = f ′(x)u, V = f ′(y)v, (9)

for arbitrary f ∈ D(R). Observe that Gδ acts regularly on

M = {(x, y, u, v) | x 6= y, u 6= 0, v 6= 0} ⊂ R4.

The first-order determining equations of Gδ are

Xy = Xu = Xv = 0, Yx = Yu = Yv = 0, U = Xx u, V = Yy v. (10)

The higher-order determining equations are obtained by prolongation.
By definition, the Lie completion of Gδ is the solution space Gδ to the deter-

mining system (10), which is the set of diffeomorphisms of the form

X = f(x), Y = g(y), U = f ′(x)u, V = g′(y) v, (11)

for f, g ∈ D(R). Theorem 3 assures us that Gδ is a Lie pseudo-group acting on M .
On the other hand, we can clearly extend the action (11) to all of R4, but the

resulting pseudo-group is not regular. Indeed, the jet fibers sitting over the subset
{u = v = 0} are singular, and hence the extension does not satisfy our criteria for
a Lie pseudo-group.

This example points out the importance of the regularity conditions for the
definition of the Lie completion of a pseudo-group. Further investigation indicates
that this appears to depend upon whether any source coordinates are present
in the determining equations for the pseudo-group. In our example, the source
coordinates x and y do not explicitly appear in the determining system (10).
Indeed, Gδ can be extended to a Lie pseudo-group acting on R4 \ {u = v = 0}, but
not all of R4.

We next show that the Lie completion of a pseudo-group is unique up to isomor-
phism. For this purpose, we recall Cartan’s and Vessiot’s notion of isomorphism
in the category of regular pseudo-group actions, [2], [19].

168



LIE COMPLETION OF PSEUDO-GROUPS

Definition 6. Let G be a regular pseudo-group action. Its nth order normal pro-

longation is the induced action of G on G(n).

Example 6. The first order normal prolongation of the pseudo-group action (1)
is the pseudo-group (9).

Definition 7. Two regular pseudo-group actions G1,G2 on manifolds M1,M2 are
isomorphic, written G1 ∼ G2, if they have a common isomorphic normal prolon-

gation, meaning a regular pseudo-group G acting on a manifold M , and surjective
submersions πi : M → Mi, i = 1, 2, such that, for each i = 1, 2, there is a one-to-
one correspondence between elements φ ∈ G and φi ∈ Gi satisfying πi ◦φ = φi ◦πi.

Example 7. The pseudo-group (9) is isomorphic to the pseudo-group (1). To see
this, let M1 = {(x, y) |x 6= y} and M = M2 = {(x, y, u, v) |x 6= y, u 6= 0, v 6= 0}.
Then the appropriate surjective submersions are given by π1(x, y, u, v) = (x, y)
and π2 = 1.

Example 8. In terms of Definition 7, the pseudo-group (1) is not isomorphic to
D(R1).

Theorem 5. Let G1 ∼ G2 be two isomorphic regular pseudo-groups with respective

Lie completions G1, G2. Then G1 ∼ G2.

Proof. Let G be the isomorphic normal prolongation of the regular pseudo-groups
G1, G2. Let n?

1, n
?
2, n

? be the orders of regularity of G1, G2 and G, respectively,
and define n = max{n?

1, n
?
2, n

?} to be the maximum of the three values. Let G1,
G2 and G be the Lie completion of G1, G2 and G. To show that G1 ∼ G2, we first
note that, for each y = 1, 2, the equation πi ◦φ = φi ◦πi reduces to

jnπi|φ(z) ◦ jnφ|z = jnφi|φi(z)
◦ jnπi|z, (12)

at the level of jets. Now choose φ ∈ G and z ∈ dom φ. Then, for each n ≥ n,
equation (12) and Lemma 2 imply that there exists φn ∈ G and corresponding
φn,i ∈ Gi such that

jnπi|φ(z) ◦ jnφ|z = jnπi|φn(z)
◦ jnφn|z = jnφn,i|πi(z)

◦ jnπi|z . (13)

Taking the limit of (13) as n → ∞, and denoting the limiting infinite jet by
j∞φi|πi(z), we obtain

j∞πi|φ(z) ◦ j∞φ|z = j∞φi|πi(z)
◦ j∞πi|z . (14)

It is easy to see that j∞φi|πi(z) is the infinite jet of a local analytic diffeomorphism

φi defined in some neighborhood Ui ⊂ Mi of πi(z). By analyticity, the map φi

is uniquely determined as it is completely prescribed by its infinite jet at πi(z).

Furthermore, since j∞φi|πi(z) ∈ G
(∞)

i |z , the map φi is in the Lie pseudo-group Gi.

By construction, it also satisfies the identity πi ◦φ = φi
◦πi on π

−1(Ui) ∩ dom φ.
Next, we note that if φ 6= ψ then φi 6= ψi. Indeed, choosing z ∈ dom φ ∩ dom ψ
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such that there exists n ≥ n satisfying jnφ|z 6= jnψ|z we observe from (13) that
the sequence defining the infinite jets of φi and ψi must differ.

Similar argument, this time starting with φi ∈ Gi to construct φ ∈ G, shows
that the correspondence between the elements φ ∈ G and φi ∈ Gi is one-to-one.
Here the assumption that G is an isomorphic prolongation of Gi is necessary to
argue that φ is analytic. This shows that G is an isomorphic prolongation of G i,
and by a theorem of Cartan, [18], G is isomorphic to some normal prolongation of
Gi. �

5. Differential invariants

In many applications the principal object of study is the induced action of a
pseudo-group on submanifolds. For instance, if the pseudo-group arises as the
symmetry group of a system of differential equations, the submanifolds are the
graphs of candidate solutions.

Let G be a pseudo-group acting on an m-dimensional manifold M . Fixing
1 ≤ p < m, we consider the induced action of G on p-dimensional submanifolds
S ⊂ M . For 0 ≤ n ≤ ∞, let Jn(M,p) denote the nth-order (extended) jet
bundle consisting of equivalence classes of p-dimensional submanifolds under the
equivalence relation of nth-order contact, [10]. In an adapted system of coordinates
z = (x1, . . . , xp, u1, . . . , uq), so that a submanifold S is locally represented as the
graph of a function (x, u(x)), the submanifold jets are denoted by jnS|z = z(n) =
(x, u(n)). Here, u(n) denotes the collection of derivatives of the dependent variables
uα with respect to the independent variables xi of order 0 ≤ k ≤ n.

Since diffeomorphisms preserve contact, there is an induced action of G on the
submanifold jet space Jn(M,p), known as the nth-order prolonged 2 action. For
z(n) = jnS|z ∈ Jn(M,p) and φ ∈ G the prolonged action is defined by φ(n)(z(n)) =
jnφ|z · jnS|z := jnφ(S)|φ(z). In a local coordinate system, the prolonged action is
obtained by implementing the standard chain rule, [13].

Definition 8. A differential invariant of a pseudo-group G is a function I : W →
R, defined on an open subset W ⊂ Jn(M,p), that is unaffected by the prolonged
pseudo-group action:

I(φ(n)(z(n))) = I(z(n)) (15)

for all φ ∈ G and all submanifold jets z(n) such that both z(n), φ(n)(z(n)) ∈W .

Theorem 6. Let G ⊂ D be a regular pseudo-group and G its Lie completion. Then

G and G have the same differential invariants.

Proof. Since G ⊂ G, any differential invariant of G is automatically a differential
invariant of G. Conversely, suppose I satisfies (15). Let z(n) ∈ Jn(M,p)|z . Given
φ ∈ G with z ∈ dom φ, choose φ ∈ G|z such that jnφ |z = jnφ |z . By the chain rule,
the prolonged action of a diffeomorphism φ on a jet z(n) depends only on its n
jet jnφ |z at the base point z. Therefore, φ (n)(z(n)) = φ(n)(z(n)), which, provided
both z(n) and its image lie in the domain of definition of I , implies

I(φ (n)(z(n))) = I(φ(n)(z(n))) = I(z(n)).

2Not to be confused with the prolongation of differential systems defined above.
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We conclude that I(z(n)) is also a differential invariant of G. �

Example 9. Consider the non-Lie pseudo-group G acting on R3 via

X = f(x), Y = f(y), U = u, where f ∈ D(R). (16)

The action is regular on the open dense subset M = {(x, y, u) |x 6= y}, where the
determining equations are provided by

Xy = Yx = Ux = Uy = 0, Uu = 1, Xx, Yy 6= 0, (17)

along with their prolongations. The completion G of this pseudo-group is the Lie
pseudo-group action on M given by

X = f(x), Y = g(y), U = u, f, g ∈ D(R).

We consider the induced action of these pseudo-groups on surfaces S ⊂M . Re-
stricting our attention to graphs of functions u = h(x, y), the induced coordinates
on the surface jet bundles Jn(M, 2) are denoted by x, y, u, ux, uy, uxx, uxy, . . .. We
use implicit differentiation to determine the prolonged actions, which, up to order
2, are, respectively,

G :

X = f(x), Y = f(y), U = u, UX =
ux
f ′(x)

, UY =
uy
f ′(y)

,

UXX =
uxxf

′(x)− uxf
′′(x)

f ′(x)3
, UXY =

uxy
f ′(x)f ′(y)

, UY Y =
uyyf

′(y)− uyf
′′(y)

f ′(y)3
,

G :

X = f(x), Y = g(y), U = u, UX =
ux
f ′(x)

, UY =
uy
g′(y)

,

UXX =
uxxf

′(x) − uxf
′′(x)

f ′(x)3
, UXY =

uxy
f ′(x)g′(y)

, UY Y =
uyyg

′(y)− uyg
′′(y)

g′(y)3
.

In the case of G, since the values of f ′(x), f ′′(x), g′(y), g′′(y) are independent of
each other, there is (up to functions thereof) just one second-order differential
invariant, namely

I =
uxy
uxuy

. (18)

On the other hand, for the non-Lie pseudo-group G, when x 6= y, the values of
f and its derivatives at the point x can be specified independently of the values
at the point y. This implies that the prolonged action of G has the same second-
order differential invariant (18), in accordance with Theorem 6. Further, both
pseudo-groups possess the same higher-order differential invariants, which can all
be found through repeated application of the invariant differentiation operators
D1 = u−1

x Dx, D2 = u−1
y Dx. We note that the differential invariant I , the invariant

differential operators D1,D2, and the full structure of the differential invariant
algebra can all be systematically found by applying the method of moving frames
for pseudo-groups developed in [13], [14].

Invariant differential forms play an important role in the theory and applications
of the method of moving frames, [13]. A similar argument shows that regular
pseudo-groups have the same invariant differential forms as their Lie completion.

171



VLADIMIR ITSKOV, PETER J. OLVER AND FRANCIS VALIQUETTE

Definition 9. An invariant differential form of a pseudo-group G is a locally de-
fined differential form Ω on the submanifold jet bundle Jn(M,p) that is unaffected
by the pull-back of the prolonged pseudo-group action:

(φ(n))∗ Ω = Ω (19)

for all φ ∈ G such that the domain and target of φ are contained in the domain of
definition of Ω.

Using the same method of proof as in Theorem 6, we readily establish the
general result.

Theorem 7. Let G ⊂ D be a regular pseudo-group and G its Lie completion. Then

G and G have the same invariant differential forms on Jn(M,p).

Thus, from the point of view of the local geometry of submanifolds, we can
work with the Lie completion of a (regular) pseudo-group without any loss of
information. Both possess the same system of differential invariants, invariant
differential forms and, as a consequence, the same invariant differential equations
and variational principles. In other words, under the assumption of regularity, one
can exclusively work with Lie pseudo-groups. On the other hand, extending these
results to nonregular examples is worthy of further investigation.

Finally, we remark that Johnson [6] introduced a rather different concept of
a “complete Lie pseudo-group”. Johnson’s notion of completeness requires the
existence of a finite system of nontrivial differential invariants that uniquely char-
acterizes the infinitesimal generators of the pseudo-group (in a neighborhood of
a point). This would leave out many examples, particularly those that have no
differential invariants, but are nevertheless complete in our terminology, e.g., diffeo-
morphisms, symplectomorphisms, the completion Gd of the diagonal pseudo-group
of Example 4, and so on.
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groupes de Lie, in: Géometrie Différentielle, Colloq. Inter. du Centre Nat. de la Rech.
Sci., Strasbourg, 1953, pp. 97–110.

[4] D. B. Fuchs, A. M. Gabrielov, I. M. Gel’fand, The Gauss–Bonnet theorem and Ati-

yah–Patodi–Singer functionals for the characteristic classes of foliations, Topology
15 (1976), 165–188.

[5] V. Itskov, Orbit Reduction of Exterior Differential Systems, PhD Thesis, University
of Minnesota, 2002.

[6] H. H. Johnson, Classical differential invariants and applications to partial differential

equations, Math. Ann. 148 (1962), 308–329.

172



LIE COMPLETION OF PSEUDO-GROUPS

[7] M. Kuranishi, On the local theory of continuous infinite pseudo groups, I, II, Nagoya
Math. J. 15 (1959), 225–260, 19 (1961), 55–91.

[8] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London
Mathematical Society Lecture Notes, Vol. 124, Cambridge University Press, Cam-
bridge, 1987.

[9] D. McDuff, D. Salamon, Introduction to Symplectic Topology, Oxford University
Press, Oxford, 1995.

[10] P. J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Graduate
Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1993. Russian transl.
of 1st ed.: P. Olver, Prilo�eni� grupp Li k differencial~nym uravneni�m,
Mir, M., 1989.

[11] P. J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press,
Cambridge, 1995.

[12] P. J. Olver, J. Pohjanpelto, Maurer–Cartan equations and structure of Lie pseudo-

groups, Selecta Math. 11 (2005), 99–126.

[13] P. J. Olver, J. Pohjanpelto, Moving frames for Lie pseudo-groups, Canad. J. Math.
60 (2008), 1336–1386.

[14] P. J. Olver, J. Pohjanpelto, Differential invariant algebras of Lie pseudo-groups,
Adv. Math. 222 (2009), 1746–1792.

[15] J. F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups,
Gordon and Breach, New York, 1978. Russian transl.: �. Pommare, Sistemy
uravneni� s qastnymi proizvodnymi i psevdogruppy Li, Mir, M., 1983.

[16] W. M. Seiler, Involution: The Formal Theory of Differential Equations and its Ap-

plications in Computer Algebra, Algorithms and Computations in Mathematics,
Vol. 24, Springer, New York, 2010.

[17] I. Singer, I., S. Sternberg, The infinite groups of Lie and Cartan, I, The transitive

groups, J. Anal. Math. 15 (1965), 1–115.

[18] O. Stormark, Lie’s Structural Approach to PDE Systems, Encyclopedia of Mathe-
matics and its Applications, Vol. 80, Cambridge University Press, Cambridge, 2000.
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