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Introduction

The Poissor cohomology introduced by A. Lichnerowica (Li;] occurs in many
problems of Hamiltonian mechanics and quantization [BFFLS, Hu, KM, Liy,
Va, VK, ]. For regutar Poisson manifolds, the method for computation of this
cohomology was [irst developed in [VK | 2 see also [KM, Va, Xuj. In the case
of an action of a compact Poisson group, the Poisson cohomology was computed
in [Gi]. The problem of calculating the Poisson cohomology for general {irregutar)
Poisson manifolds seems to be very attractive but rather difficult VK3l

It turns out that the Lichnerowicz dilferentiat can be vestricted to the complex
associated with the normal vector bundle over each symplectic leaf of the Poisson
manifold. The relationship between reduced cohomology and the Poisson cohomol-
ogy of the whole manifold is the first interesting probiem in this framework (it is
nol studied in the present paper). We are interested in another problem: how to
caleulate the reduced infinitesimal cobomology itself. Note that the infinitesimal
Poisson cohomology appears in investigation of linearized Hamiltonian dynamics,
deformation of Poisson bracket, and normal forms over a given symplechic leaf.

As shown in [BV, Hul, the Poisson calenlus fits in the more general conbexi
of Lie algebroids. The reduction process and the calculation of the restricted co-
homology have no specific features of the Poisson setting. The restricted Poisson
caleulus falls in the general scheme of transitive Lie algebroids, and the restricted
Poisson cohomology is a cohomology with trivial coefficients ol a certain sransitive
Lie algebroid.

The general procedure for calculating the cohomology of transitive Lie alge-
broids was developed by Mackenzie [Mz]. In the present paper we use a slightly
modified approach and develop it for the case of trivial coefficients. For a special
class of quasiparallelizable Lie algebroids we obtain simple formulas that are similar
to formulas for the speciral sequence of a fiber bundle. We also pay special atten-
tion to Abelian aigebroids because they correspond to the nondegenerate syvmplectic
leaves and play a significant role in calenlations related to non-Abelian algebroids,
Since in some applications it is also significant to know the space of cocycles, we
describe this space (of various dimensions) in the case of transitive Lie algebroids.

In the present paper we also treat the problem of equivalence of Poisson brack-
ets having the same symplectic leaf. The first step is the classification up to formal
equivalence, t.c., equivalence of Poisson tensors considered as formal power series
in coordinates along the directions normal to the symplectic leaf. This probiem has
been investigated in detail only in the case when the symplectic leaf is a single point
(see [Coy 2, Du, Ly]). We consider a formal equivalence problem for brackets hav-
ing the same transitive Lie algebroid struciure over the symplectic leat. We give a
sufficient condition for equivalence of such Poisson brackets in terms of cohomoelogy
of that transitive Lie algebroid with coeflicients in a certain vector bundle.

The paper is organized as follows.

In §1 we give the necessary facts from Poisson calculus.

In §2 we give definitions for Lie algebroids and prove the restriction theorem.

In §3 we discuss some facts [rom the theory of connections in (ransitive Lie
algebroids and introduce characteristic classes.

In §4 we calculate the cohomology of non-Abelian transitive Lie algebroids. For
the quasiparallelizable Lie algebroids we present a simple formuia for the second
term of the spectral sequence in terms of the cohomology of a finite-dimensional
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normal algebra and the cohomology of a certain Abelian algebroid or the de Rham
cohomology of the base. We show some applications of this formula and give sulli-
cient conditions for the quasiparallelizability of a transitive Lie algebroid. We also
describe the one- and two-dimensional spaces of cocycles.

In 85 we study the structure and the cohomology of Abelian algebroids. We
present a classification theorem and calculate the space of cocycles and the coho-
mology space.

In §6 we discuss some properties of homogeneous Lie algebroids. By using the
methods developed in §§ 4 and 5, we also caleulate the cohomology for homogeneous
algebroids over two different types of orbits of the coadjoint action of £ (3).

In §7 we consider a formal equivalence problem for Poisson brackets induc-
ing the same transitive Lie algebroid structure over a symplectic leal, We give
a sufficient condition for formal equivalence in terms of cohomology classes of the
transitive Lie algebroid with coefficients in a symmetric power of the normal algebra
bundle. We also discuss calculation of these cohomology spaces.

§1. Coboundary Lichnerowicz operator over a symplectic leaf

All geometric objects considered in the present paper are infinitely differen-
tiable, and we also assume that all linear spaces are over real numbers (although
all the results remain valid over any field of zero characteristic).

Let A be a manifold equipped with the Poisson bracket

{fio}=W{df,dg),  f.g,€ C®AN),

where ¥ is the corresponding antisymmetric tensor field, called sometimes a Poisson
tensor [MR]. The tensor ¥ defines a morphism of vector bundles q: TN — TN,

(1.1) (Boraf) WP, ), B, Ba € D(T™N).

(Here (-,-} is the pairing of 1-forms and vector fields.) It is well known Do, Ka,
Ko that the Poisson bracket on functions can be extended to a bracket on 1-forms

{, }: T(T*A) X D{T*A) — DT,

(1.2) (81,82} & Lo, B ~ Lop, Pr — AW (8L, ),

where Lz, 8y denotes the Lie derivative of the differential form 3, along the vector
field ¢f3;. The bracket {1.2) satisfies the Jacobi identity and endows the space of
I-forms with a Lie algebra structure; the mapping g is a homomorphism of this
algebra into the Lie algebra of vector fields:

(1.3) a{B1, 82} = [aBy, afal.

Moreover, we have the identities

(1.4) d{f. g} = {df, dg},

(1.5} {Bu, S8t = f{B1 Be} + (Lop (N)B2s frg,€ C(N).

By V¥(AN) we denote the space of contravariant antisymmetric tensor fields of
the type (k,0) on the manifold . The Schouten bracket [Sn)

I, 1: VRNV x VN — YPH=L AN
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defines the structure of a Lie superalgebra on V'(A) gl Nyk(Ny. 1t is well
known. [Lig] that the Poisson tensor satishes the condition [¥, W] =0 and defines
o coboundary operator I VE(N) — PRHAY,

(1.6) PO w,qQl,  QeViw),  PP=0

Note (see, for example, [KSM]) that the operator (1.6) is a standard coboundaty
operator [Fj associated with the representation of the Lie algebra of differential
forms in the ring C°(N):

k

DQ(,B(),,B*“ cen HBIC) = Z(”—J-)Jﬁqﬁ, (Q(;B(hﬁla' . 7ﬁj1 s :ﬁk))

7=0

+ Z (ﬁl)i.}‘jQ({ﬁiaﬁj}yﬁ{):161:'-'aai:"'!ﬁj,"wﬁk)'

n<i<isk

(Here @ € VE(N), B; € I{T*N), and the “hat” stands over omitted terms.)

Let O be a symplectic leaf of the Poisson bracket (1.0), i.e., an integral leaf
of the characteristic distribution Ran(q) [We]. The embedding © < A deflines a
vector bundle TN over a symplectic leaf O with fiber TUN (z € O). A restriction
of differential forms to the leal O is denoted by 7, T'(T N — T(THN)- Similarty,
we define the vector bundles /\k TN and the restriction operation 77, PE(N) —
NEToN.

proposrrion 1.1, The operation {, Yo is defined on sections of the bundle
TEN, and this operation gives & natural restriction of the bracket (1.2),

To{ﬁla B2} = {?”Oﬁb '?”@ﬁz}o.

COROLLARY 1.2. The coboundary operator Do DA  ToN) — AT ToN)
that is a restriction of the Lichnerowicz operator {1.6),

re D = Doty D% =0,

is defined on the sections of the bundle /\i‘ TolN.
RiMaARK 1.3, This restriction can be performed over any Poisson submanifold.

The proof of Proposition 1.1 follows from the more general Theorem 2.1 in the
next section.

§2. Reduction of Lie algebroids

A, Lic algebroid [Mz, Prl is a triple (A B,q,{, 1), where A — B is a vector
bundle, q: A — T B is a morphism of vector bundles, and {, }: [(A)x1(4) — I(A)
i3 & bilinear operation on sections that satisfies the following properties:

o the space of sections of the bundle A forms a Lie algebra under the opera-
tion {, };

e the mapping ¢: T'{A) — VHB) is a homomorphism of Lie algebras:

(2.1) qlon, an} = lgon, qaia), o, o € T(A)
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e any two sections a,ay € I'(A) and each function ¢ € C™(B) satisfy the
relation

(2'2) {CU[,‘PCQ} b QO{QI:QZ} + ('C'qcu((p))a%
A Lie algebroid is called ransitive if the morphism g is a surjection.

ExaMPLE 1. Obviously, the triple (T*A ~ M, ¢, {, 1), where A is a Poisson
manifold, ¢ is defined by (1.1), and {, } is defined by (1.2}, is a Lie algebroid.

Examrre 2 (Transformation algebroid [Mz]). Suppose that an ackion of a
finite dimensional Lie algebra (G, [],) is given on the manifold B, that is, a ho-
motnorphism q: G — V'(B) is defined. The triplet (G x B -+ B, q, {, }) is a Lie
algebroid with commutator on sections defined as
(2.3) {ai,ag} s {al,ag}g -+ ngc‘tg — Y li'T

qeen
(Here V9 is a flat connection in the vector bundle G x B — B.)

An equivalent of the Poisson cohomology for a Lie algebroid is the cohomology
of an infinite-dimensional Lie algebra I'(A) with coefficients in the I'(A)-module
C>{B) (i.e., the cokomology that corresponds to the representation o — L, in a
one-dimensional trivial bundle).

Let us consider a standard complex [F, Mz Ck(4) € (ARA*Y, k > 0, and
the differential operator : C*{A) — Ck+i(A),

.ii:
def A o -~
D flag,en, . o) s Z(Ml)-’f,q% (j(cm,a[, co Dy ,ak))
(2.4) i=0
+ Z (-~1)”-7f({ai,crj}, Gy, ey, e ,Eii, e ,ﬁj, sy (Ek)

0<ici<k

(Here J € C*(A), a; € T'(A), and the hat stands over omitted terms.) We denote
the cocycles and the coboundaries of the operator (2.4) by Z*(A) and BF (A),
respectively. The cohomology of the Lie algebroid [Mz] is defined as

HE(A) = Z*(A)/B*(A).

Note that on the cochains C*(A) the standard Grassmann multiplication is
defined, with respect to which the operator (2.4) is antiderivation and the coho-
mology H (A) o P, H*(A) inherits the structure of the Grassmann algobra [F].
The mapping ¢*: 1'( /\k T*B) — C*(A)} is a homomorphism of Grassmann differen-
tial algebras (i.e., g"{wi Awy) = (g"wi) A (¢*wy) and D¢* = ¢*d), and thus, defines
a homomorphism of Grassmann algebras ¢t : H'(B) — H(A).

For each submanifold M <> B, by A w — M we denote the vector bundle
obtained by the restriction of the bundie A - B to the base M s by ry (A -
I'(A,,} and T C*(4) — CF(A ) we denote the restrictions of sections of the
corresponding bundles.

Let us consider a distribution D, def (Rangy,) < TpB. Aun integral leaf is a
submanifold O « B such that 7,0 = Dy, for any point y € O. We shall say that
an integral leaf @ is tame if each section o € I'(Ap) of the restricted vector bundle
has an extension & € T'(A), o = r,&.
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§3. Connections, curvature, and characteristic classes
in transitive Lie algebroids

Let {A - B,q,{, }) be a traasitive Lie algebroid. We consider a vector bundle
g — B, whose fiber is the kernel of the morphism ¢
[ def .
{3.0) 9. = Kerg,
(since the morphism ¢ is surjective, g = |, g. s & subbundle of the bundie A -~ B},
We have the [ollowing statement [Maz].

Prorosrrion 3.1, {(a) The space of seciions U(g) s an ideal in the Lic algebra
I{A4).
(b} The restriction of the bracket {, } to the sections of the subbundle ¢

(3.1) 00,8, & (00,05}, 01,6, € P(g),
18 linear over the ring of funciions
(32) {6‘; s @02} == 90[91, 02}, W e C}w(B),

and generates ¢ Lie algebra structure in each fiber gq; the structures corresponding
to different points of the base are isomorphic.

FPROOF. Statoment (a) follows from formula (2.1). Formula (3.2) follows from
(2.2). The algebras g, are isomorphic because there exists a Lie connection in the
Lie algebroid (see below). |

Coronuary 3.2, The adjoint action of the Lie algebroid on the vector bundle

g

(3.3) adg 0 (3,0},  Bel(d), 6el(g),
has the following properties:

(3.4) adys 0 = pady 0, p e C7(B),
(3.5) adg(l) = padg 0 + Ly(w)0,

(3.6) adpl0y, 02] = [adg 61, 00) + [0y, adz 6]

Moreover, let us note that the subbundle zg {zg, is the center of the Lie algebra
g.) and [g, o] are invariant under the adjoint action {(3.3}.

A transitive Lie algebroid is called Abelian, if the Lie algebra g, is commutative.
The algebroid (THN — O, ¢, {, }&) over a nondegenerate symplectic leaf O of the
Poisson manifold A is an example of an Abelian algebroid {see [We)).

A linear connection ¥V in the vector bundle g -« B, satisfying the condition

(3.7) Vul01,00] = [V,01,0:] + [0, Vo], v VYB).

is called a Lie connection [Mz] in a transitive Lie algebroid.

Clearly, this condition is equivalent to the Fact that the parallel transport of the
connection V, 71",?: By(0) — By, along each path v: [0,1] — B is an Isomorphism
of Lie algebras.

The adjoint connection [Me] is the major example of the Lie connection. Les
P < A be some subbundle transversal to the subbundle g:

(38) A;z: = ,Pm B 17
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Obviously, cach compact leaf is tame. The orbit of a coadjoint action in a
“wild” Lie algebra [Ki;] is an example of an integral leaf of the distribution Rang
that is not tame.

TaEOREM 2.1, Let the triple (A — B,q,{, }} be a Lie algebroid and let O be
a tame mtegral leaf of the distribution Bang. Then there is a natural structure of
a transitive Lie algebroid {Ao — O,q,{, }o) such that

(25) TO{al,aQ} - {Toai)’r@CEQ}O-

CoROLLARY 2.2. Let Dp be the coboundary operator (2.4) in the Lie alge-
broid Ap. Then riD = Dorfy, and the homomorphism of Grassmann algebras

7'29: H(A) — H (Ap) is well defined.

RiMarkK 2.3. The theorem remalins true for each tame submanifold M <« B
such that D, € T, M for each z € M.

To prove Theorem 2.1 we need the [ollowing observation.

LEMMA 2.4. Suppose that o submanifold M — B satisfies the condition D, C
ToM for cach point & € M. Then the lincar subspace J,, 2 Kerp A B8 an ddeal
def

in the Lie algebra T'(A). Moreover, the linear subspace Ch{A, M) = Kerr} is
invariant under the action of the differential operator (2.4).

Proor. It suffices to prove this statement for a small open domain U < B such
that UN M # &. In the domain U there is a basis of sections X, ..., X,, € T'(Ay);
the section ag = 377 @:(2) X; belongs to the space J,, if and only if a;(w)| _,, = 0.
For any section o € T'(Ay)

T

Tyl ot = Z (T'Mai(x){a, X} TA_,[[:(,G((E,;)X.,;) =1

im=1

{since the vector field gov is tangent to the manifold M), Hence, {o, g} € J,,. The
second part of this lemma can be proved similarly.

PROOF OF THEOREM 2.1. Since O is tame, for each section 8 € I'{Ap) there
exists its extension 3 € T4, 8 = -ro,g. We define the operation {«, 3}o def
r51% B}, where & and 3 are the extensions of the sections a’,’;ﬁ (_:“_‘F(,A@).

Now we show that this operation is well defined. Let £y, f2 and &, iy be
extensions of the sections 7 and «, respectively,

7'(9{&1,1?;1} - ’f‘@{&z,g’z} = %‘f‘@({a'l — oy B+ B+ {E1 + Ga, B — Ez}) =0

(since the sections (&1 — &q) and (El ~ ) belong to the ideal Jo = Ker(r,)).
Obviously, the triple (Ao — O, ¢,{, }e) is a transitive Lie algebroid.
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Since Ker ¢y = fx and Rangp, = T, B, we have the isomorphism of vector bundles
p: TB — P that is inverse to the morphism ¢
(3.9) gop=idyp.

The adjoint connection is defined via the adjoint action (3.3):

(3.10) vP0 % ad,, 0, veV'(B), 0l

(Formulas (3.4), (3.5), and (3.9) imply that {(3.10) actually defines a linear connec-
tion in the vector bundle g; that is, it satisfies (A.1) and (A.2).)
Now let us calculate the curvature (A.3) of the adjoint connection (3.10}.

ProrosITION 3.3, (a). The curvature of the adjoint connection has the form

(3.11) K (v, 02)8 = [BY (v1,v2), 0],

where the antisymmelric morphism of the wector bundles RP.TB®TB — g is

defined as

(3.11a) RF (w1, v2) 4 fpuy, puat — plv, va)s vy, ve € V(B

(b) The adjoint connection has zero curvature of and only if

(3.12) ((P),I(P)} C (P ® 29).

Proor. We have
K (vy,v2)0 = adpy, {adpy, 0) — ad py, (adpu, ) — adyiv, ug) 0

= ad({py; pra}—plr,val) 0 = adpr iy, v,) 0.

By {2.1) and {3.9), gRF (vy,v2) = 0. Thus, statement (a) is proved.
To prove statement (b}, we note that curvature (3.11) is identically equal to

gero if and onty if

(3.13)

If condition (3.12) holds, then {pu1,pr2} € T'(

P zg = {0}. Conversely, the sections By, 2 €

pgf3;; therefore,

(81, Ba} = {pabh, paBa} =

RP (vy,v2) € T'(2g) Yoy, € VB
Pepzg) and (3.13) is satislied because
(P) can be represented as §; =

(RP {qBr,qB2) + p[(lﬁl,qﬁzl) e T{(P®=zg) U

COROLLARY 3.4. The restriction of the adjoint connection P to the invariant
subbundle g has zero curvature and is independent of the choice of a transversal
subbundle P. Thus it defines @ wniversal flat connection in Zg. In particular, in an
Abelian algebroid the bundle g — B 1s flat.

ProoOF. By (3.11}, the curvature is equal to zero. Now let us consider two

subbundles P and P that are transversal to g, and the corresponding morphisms P
and 7 (3.9). For each vector field v € V'{B) we have (pv — pv) € T'(g) therefore,
VPO - VI = jpv - Fu, 8] = 0 for each section f € D(zg). Hence, the adjoint
connection in the subbundle zg is independent of the choice of P. o
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Remark 3.5, In the book by Mackenzie {(Mz] the morphisin p: 78 - P from
(3.9) is called a connection in the Lic algebroid. A curvature of this connection is
RP, and this connection is called flat if B (vy,v9) = 0 (i.e., {T(P),I'(P)} S T{P)).

REMARK 3.6. In the context of Poisson geometry the adjoint connection ap-
peared in [VIa].

Characteristic classes. To complete this section we would like to show that
each transitive Lie algebroid structure over a base B gives a subring of H* (3) which
is a generalization of characteristic classes for vector bundles.

Let P*{g,) % gk g, denote the space of polynomials of degree k on the Lie
algebra (3.0) (here S* denotes the kth symmelric power). Consider a vector bundle
invF(g) = Usep inv®(gs) whose fiber
(3.14)

inv*(ge) B {f € PH(gu), (o, )61, 62, .., 00)
ke
- Zf(gls : --10j-"-19{3079j]>0j+11 v 701‘»') =0, 0010|a- e ;Ok € g:v}
Je==1

is & space of ad-invariant polynomials on g,.

PROPOSITION 3.7. Every adjoint connection (3.10) induces a flat connection in
inv’”{g); this connection does not depend on the choice of o transversal subbundle P.

Proor. For each adjoint connection (3.10), & connection in & vector bundle
PRg) = Upep P*(ge) is defined by the formula

i
(3.15) (VEs) 01,2 0k) = Lu(s(00,...,0:)) = S " s(04,..., V70, ... 65)
je=1
(here s € T'(P*(g)) and 8, € T(g)). Now observe that for each § € I'(g) and
5 € I‘(Pk(g)),

Vs = VEtys ~ Ly 45

{here £g is defined as in (3.14); w € V(B)). Therefore, inv*{g) is an invariant
subbundle in P*(g) with respect to any adjoint connection (3.13), and thus we may
regard the connection (3.15) as a connection on inv®(g). To see that this connection
on invk(g) has zero curvature, nobice that

(5V" (11,u5))5 = £pp s=0  for each s &€ I'(inv*(g)).

{uy,12)
Now let P and 7' be two different transversal subbundles (3.8), and let p and
¢’ be the corresponding morphisms (3.9). Then
VPs— V= lptwyp)d =0 VseT{inv*(g)), we V(B
Thercfore, the connection in in‘vk(g) does not depend on the choice of a transversal

subbundle P. Cl

Now consider a space Inv*(g,) of Aut(g,)-invariant polynomials on Ot

(3 16) 111Vk<g:';) cgf {f € Pk(gw): f(g 01,9 -y, .. g 0;‘.) o Jl,(91>92 . _Jgk},
1,02, ,0, € go, Vg € Aut(g,) }
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(here Aut(g,) is the group of all antomorphisms of the Lie algebra g.. and g - &
denotes the action of g € Aut{g,) on & € ga).

It is easy $o see that Tnv®(g.) is naturally imbedded into the space of parallel
sections of the vector bundie inv®(g); therefore, for each f € Inv®(g.) we can define
a differential form cf € D(A*T*B),

(3.17)
cpluy, g, - Ugg) = J(R”, ..., R

def SN 1 ' T
= Z (—1) @“)"“,f(RP(%(.l),ua(z)),---,RP(%(%—-U,ua(zk))),
A=t PYS ’

(here the sum is taken over all permutations of {1,..., 2k}, w1y, ., Uzk € Vi(B),
and B” is a “curvature” {3.11a) of some adjoint connection).

THEOREM 3.8. For each f & Inv¥(g,), @ differetial form c; (3.17) is closed
and its cohomology cless in H () does not depend on the choice of o transversal
subbundle P.

PROOF. Since cach f € Inv*(g,) is a parallel section of inv*(g) and VP R” =0
(see [Ma]}, we have

dej = df(R",R”,...,R")

k
= Zf(R’P,...,VRP,...,R"’) + (VPART,...,R7)=0.
j=1

Now we show that the cohomology class of ¢y does not depend on the choice of
a transversal subbundle P. Let P and P’ be distinct subbundles in A transversal
to g (3.8), and let p and o’ be the corresponding morphisms (3.9). Define

Pt () (1 — Oplu) + ' (w)-
1t is casy to see that for each ¢ € R, p{u) satisfies (3.9) and thus defines a transversal
subbundle P! for each t € R.

Let Rt denote the curvature (3.11a) of the gransversal subbundle P*, and for
each f € Inv®(g,) define ¢f = FRPS,...,R” "), where the right-hand side is defined
as the right-hand side of (3.17) with R7 replaced by R” ", "Phis differential form is
closed for eachi t € R,

Tn order to show that the cohomology clags of c& does not depend on ¢, consider
another transitive algebroid (A, — B xR, a1, {}1), where Ay = 7 AD a3 TR {here
m and 7y are natural projections of B % Ik onto B and R respectively),

qlad®v) = qle) +v, acl{d), ve VHR),
{al by, o b ?)2,}1 = {C‘t[,(?iz} 45 ['Ul,'l)g], Yoy € 1"(/-1), w Vl(]R), 1==1,2.

Tntrodice a vector bundie morphism py: T(B % R) — Ay,
pi(u 4+ ) = ((1 - 6plw) + ' (u) dv,

where t is the coordinate on R, uw € V'(B), and v & VHIR). Tt is easy to sce that
g o p1 = idpemy; hus py defines a subbundle in Ay (ransversal to g = ker gy =
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m{g. Direct calculation shows that the curvature 27 {3.11a) of this transversal
subbundle satisfies
RP (e 4 vy, 1+ w2) == BT (wr,2) + Loy (0P (u2) — plug))
= Lo, ()P (w1) — plur))
{here u; € V'(B) and v; € VI(R), i = 1,2).
Since g = kerq = '}y, it follows that Inv¥(g,) = Inv®(g,); therefore for
each f € Inv*{g,) we can define wy = f(Ry,..., By) using formula {3.17). Thisis a

closed differential form on B x R, and using (J i8) it is easy to see that cf T =Wy,
where 4y B - B X R is defined hy the formula

i{m) = (x,1), rel, teR

(3.18)

Since all the 4, are homotopic, the cohomology classes of 4 fwyr coincide for all
PIC, 2y 5

t € R; in particular, the cohomology classes of ¢} = f(.h’,73 S BP) and ¢} =

FLRF', ..., R"") coincide. This proves that the cohomology class of (3.17) does not

depend on the choice of a transversal subbundle. [

Exampre (Chern characteristic classes of a vector bundle). Let & — B be a
vector bundle. Consider the transitive algebroid A4 = CDO(E) of covariant dif-
ferential operators [Mz]. Every section o of 4 acts on T'(£) as a first-order dil-
ferential operator affs) = L, (f)s + fafs). It is easy to see that cach mor-
phism p: TB — CDO(E) satisfying (3.9) defines a linear connection ¥? on &
(Vis = p(u)(s)) and the curvature (3.11a} corresponding to p is exactly the cur-
vature (A.3) of the connection V?. This proves that the cohomology classes iy
are exactly characteristic classes of the vector bundle £ (see, for example, [NSI,
Appendix C).

4. Calculation of cohomology of a transitive Lie algebroid

Let (A — B,q,{, }} be & transitive Lie algebroid. We will always assume thag
the bundle g (3.0) can be decomposed into the direct sum of subbundies g = go @8,
which satisfies two conditions:

e go and §) are invariant under the adjoint action (3.3);

¢ Jo is a subbundle of the center gy < zg.

In what follows, we are interested in two extreme cases: (1) § = g and (2)
go = zg (though, generally speaking, not every tramsitive Lie algebroid has an
ad-invariant subbundle f) that is transversal to zg).

Let us choose some transversal subbundle P (3.8). We consider a vector bundle

(4.0) A B P @ gy~ TE@ gy,

on which we deline the structure of an Abelian algebroid (4 — B,q, 1, bor A
bracket on sections of the subbundle 4g © A is defined by the formula

(4.1) 1o, o ol {o, o} — m{o, aq},

where 7: A — B is the projection on the subbundle § along the subbuudie Ag.
By K*' we denote the space of s-cochains of the Lie algebroid Ay with values
in the space of sections of the t-th external power of the subbundle dual to §:

g ¢ def b R
(1.2) K= A e N A
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The space K = P, KF, where K = @, K% 5 a Grassmann algebra with
respect to the multiplication

(4.3) (m @w) O (N ®ws) = (=1)"1F%2 (g At) @ (W) Awa),

where m; € T(AMB), wy € C%{Ag), 1= 1,2
We define the mappings p®¢: C*7*(A) — K5t and est: K9P — CFP(A) as
follows:

(4.4) D (01 0 (Bry . Be) B PO B0 By )
(here f € C¥19(A), 6; € I'(h), and f € 1{Ap)) and
s def 1 .
8'5"'??{041., ey Qs ) = sl Z -1 "?(W‘%(l): e 17”-‘50(&)) (aa(:‘,+l)

O’ESL}‘..;
W (t41)s - - y (bt} ﬂaau_|,,3))
here n & K08 and oy € T(A), L= 1,..., &+, and the summation is taken over the
1

set of permutations).
 write pf st and e st
We write pP T 3, g PO and €7 = e €

PROPOSITION 4.1, The mapping pt: CF(A) — Kk is an isomorphism of Grass-
maonn algebras

(45) (pk)_l = €ku pkl_}.k‘z(fl A JFQ) = pkl fl l szf'z (ft € CIW (A)) i= 1a2)7
satisfying the commutation relation
(4.6) pPHD = (do -+ di + 6)p,
where the operators dy: Kt — I, dy: ot ey JCEFE, apd 1 O o KOOTRETE
are defined as follows:
4.7)

d(m{ﬁo,ﬂl g ,95)((11, e ,leﬁ)

(ﬁf Z (“}')i_!“jn([giagj}ﬂ 0()1 01) v vai: ey aj: e 19t)(al) vt ,CE_.;),

0<gi<j<t

(4.8) iy SO,
t,8

(4.9)
vb’tn(glx s :Bt)(a(,hala s ,Oc’s)

&

t'_lﬁ_f Z(*UJ (ﬁqa.j (77(01: v Jgt)(a(h e }aja ey ﬂs))

Je=i)

t
- Zn(ﬁl,...,QTWI,VfﬂjBT,HTH o .,Ot)(ag,...,&j,. e ,CES))

+ Z (_]-)l_}.m”(ola BEER 9;)({(1“ (Im,}(), ey, Cep e e }&51 e :aﬂ‘u et ia.‘j)J
n<laom<s




ebra with

RS A) as

Co(te))

on over the

m of Grass-

= 1,2),

. K:s-\-Z,t,* 1

e, s )
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(4.10)
5‘?’](91, e ,95___1}((.'5{0, [ 5 TR ,Ct_g,a'_g,H)

(_i;_z_f Z ( -1 ) i+

O<i<m<s+1

X W(WRP((IQE, q(“f?n))f)l: o ,B;M[)(G’f(],a[,. . '1Eii: e '1a?n) ta :Cfspas\iul);

(here w is the projection on the subbundle §) along go) end salisfy the following
commautation relations:

(4.11) a2 =0,
(4.12) dody -+ dydy = 0,
(4.13) d3 + dyb + 8dy = 0,
(4.14) dy & + by = 0,
(4.15} 5% = 0.

Proor. Formulas (4.5)-(4.10) can be verified by direct calculations. Bach
formula {4.14), 4 = 1,2,...,5, follows from the identity p3 T b8~ D%est = . O

REMARK 4.2. The operator dy is a standard coboundary operator for the zero
representation of the Lie algebra I'(h) in the space C"(4g) = €D CF(Ay). The oper-
ator d; coincides up to the sign with the differential operator (A.4) {see Appendix)
that corresponds to the connection in the bundle &, A" b* induced by the adjoint
connection V7. In particular, for any section € K" we have dyn = Dg7, where
Dy is the coboundary operator (2.4) of the Abelian algebroid (4¢ — B,q,{, }o).

REMARK 4.3, Each of the operators dy, di, and § is antidifferential with respect
to Grassmann muitiplication (4.3):

(do +di +8)(m O} = ((do + dy +8)nn) Tomg + (—1)* o 03 (dg + dy + 5)ma,
where 7; € K% 4 =1,2.

Let us consider the Hochschild-Serre spectral sequence (E2%, dS*) [HS], related
to the ideal I'(h) of the Lie algebra I'(A). We have the following result (see [Mz]).

ProrosITION 4.4. The spectral sequence (5", d5*) converges to the cohomol-
ogy space H (A):

(4.16) HE(A) ~ @ Bt Jor > max(t+1,s) + L,
the=h
and
(B",dy") = (K™ dy),
(4.17) (B3 d)h) o (Hy K5 dy),
(4.18) (B3, d5"y o2 (Hy Ha K, 6 — dydiytdy),

where the operators dy, di, and § are defined by (4.7)-(4.10).
The proof is standard [HS].
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Let us consider a vector bundle Hth — B, whose [iber is the cohomololgy space
H'(h,) of the Lie algebra b,. It is casy to see that the space of sections of this
bundie is isomorphic to the space Hy, K™ (the isomorphism can be established by
some scalar product in the bundle /\!’ p*; in this case the fiber A th%-’u is realized as
the orthogonal complement o the subbundle of coboundaries in the subbundle of
cocycles). Similarly, one can obtain the isomorphism

(4.19) Et e He Ko = (I @ N\ A,

. . . Loym o

By V' we denote the connection in the vector bundle A6 induced by the
adjoint connection. If we restrict formula {4.12) to the space K9 then we see that
the connection V¢ satisfies the formula

vfﬁ—l d(}"l = dovi}"? V7I € ]CU‘L> RS Vl( )

Hence, the connection V* is invariant over the subbundle of cocycles and the sub-
bundle of coboundaries of the operator dy. Thus this connection induces a connec-
tion in the vector bundle I*h, which we denote by the same symbol V*.

The following staternent is a reformnulation of the result obbained in iMz].

PROPOSITION 4.5, (a) In the bundle H'h the connection VE, which is induced
by the adjoinl connection VP, is flat and independent of the choice of the transversal
subbundie P.

(b) The second term of the spectral sequence coincides with the cohomology

space of the operator 7' defined as in (A.6) associated with the flot connection v

(4.20) 05t o0 HE (Ag, H).

Proor. We deline a morphism of vector bundles £: b ® /\'L h* — /\” * by the

formula,
L

le:l
b0, -+, 8) = ST n(00, 071, 10,0,], 60415, 00).
=1
For each cohomology class [n]q, & Ha, K™ we have [fyr]q, = 0 (sce, for example,
[CE]). One can casily verify that

(viivgg - viﬁgvl:n - V[Lul..)g})"'i i '“ewrf{.")(m!-UQ)(T]) V"? = ‘FC(M"

Therefore, in the bundie H*H the curvature of the connection V! is equal to zero.
Lot P and P’ be two subbundles (3.8) transversal to g, let p and p’ be morphisms

(3.9}, and let V* and ¥ be the corresponding connections in the bundle A b

Obviously, (pv — p'v} € I'(g) for any vector field v & VB, Tt is easy to see that

’ L
(vi vfi} )r".' = gw(‘pu-«-,l)"i:;)?’.iI VT? & 1‘(/\ h<)

Therefore, the adjoint connections V¥ and V* induce the same connection in the
bundle H'h. Statement (a) is thereby proved.
Statement (b) follows from (4.17), (4.19), (4.9), and statement (a)- O

A simple consequence of formula {4.20) is the following generalization of the
theorem stating thal the de Rham cohomology is finite-dimensional.
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Prorosrrion 4.6. Suppose the base B of a transitive Lie algebroid is a finite-
type manifold. Then the cohomology space H'{A) is finite-dimensional,

Proor. Let us consider the spectral sequence corresponding to the invariant
subbundle § = g. Then we have EJ* ~ HE (H'g) (see the definition for the
cohomology of the lat connection in the Appendix). By applying Lemma A.3, we
prove that the second term of this spectral sequence is finite-dimensional. Tlence,
the space HM(A) ~ @, _, B3 is also finite-dimensional. G

A transitive Lie algebroid is called quasiparallelizable if there exists a decompo-
sition g = g @ h into the direct sum of ad-invariant subbundles such that go < 2g,
and for any ¢ > 1 the canonical connection V! has a trivial holonomy group in the
bundle A%,

Obviously, each transitive Lie algebroid over a simply connected base B is
quasiparaliclizable {h = g). It also should be mentioned that we can ensure the
quasiparalielizability of transitive Lie algebroids by imposing some conditions on
the Lie algebra g,.

PROPOSITION 4.7. For a Lie algebroid to be quasiparallelizable, it suffices that
the following two conditions hold simultancously.

(i) The Lie algebra g, can be decomposed into the direct sum of its center and
its commutant, g, = 2g, B 9, 02|

(ii) The Lic algebra b, = (ga, ga] i complete (that is, each derivation of the Lie
algebra Ty, is interior) and the group Aut(h,) of cutomorphisms of the Lie algebra
he is connecled.

Proor. For each path v: [0,1] — B, v(0) = (1) = xy, the parallel trans-
port Ty: H'(he,) — H*(he,) has the form T4[Cly, = [1%Cla,, where the parallel
transport Tk : C*{ha,) — C'{Yy,) satisfies the formula

(T’)tr())(gl) e )91.) = O(T,;DO[, v >T$B't)u gl: ey 0.'4 &« {].1:(13

and Tf By > Buy 18 the parallel transport of the adjoint connection V7 in the
invariant subbundle b = (g, g].

Obviously, T&P is an automorphism of the Lie algebra h,. It follows from
condition (ii) that each automorphism a € Aut(h,) can be represented i the form
of a finite product of automorphisms of the form a = exp(ad #), where & € b, (see,
e.g., Proposition 4.6.1 in [GG]). Hence, to complete the proof, it remains to show
that the group of interior automorphisms acts trivially on the space H*(f,,).

We consider the one-parametric group of linear isomorphisms a,:#'{(h,,) —

(C - Ad(exp(0))} (01, .., 0,) & Ce™ ™0y, ... ™' ™,).

As ig easy to see,

(C - Ad(exp(rd))) (01, ..., 0:)

i
— Z G(ead 1‘091 . ,eaclfr()()!mh [0‘ eml 7‘09!:]‘ eml Tﬁgt_f_}’ . ,ea(l ngt)
=1
=l (C - Ad(exp(r?))) (01, ...,0,).

d
dr
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Since [fgC}a, = 0 for each cocycle ¢ € Zy,(he) (see [CE]), we have L = (O

dr
hence, ar = ap = id. The proposition is proved. ]

TuEoreM 4.8. Let (A — B,q,{,}) be a quasiparallelizable Lie algebroid.
Then the second term of the spectral sequence, corresponding to the subbundle §,
has the form

(4.21) Ept e bt @ H{Ay),
where H*(Ag) is the cohomology space of the Abelian algebroid (Pdgy — B, g, {, to)

and ht = H tI}|:,,. is the cohomology space of a findte-dimensional Lie algebra D.. In
this case for any ¢ € ht, s € H¥(Ay), we have

(4.22) d3(¢ ® 2) = dy ¢ ® s,
where the operation of Grassmann multiplication & in the spoce [ " is induced by
the Grassmann multiplication (4.3) in the space Ef)’t.

Proor. By applying Lemma A.4. (see the Appendix} to (4.20), we obtain
(4.21), Formula (4.22) follows from (4.18) and Remark 4.3 [

COROLLARY 4.9. Let d*[¢ @ sele = 0 for any k= 2,3,...,7 — 1. Then
A3 (¢ ® sl = (A" () B 4],

, . ¢ s beber 1
where [1), 45 the cohomology class in the space B9t = Kerd!, /Rand; ;.

REMARK 4.10. If h = g, i.e., Ag = P =~ TB, then the mapping ¢': H*(Ag) —
H*(B) is an isomorphism of Grassmann algebras.

COROLLARY 4.11. Let the base B of o transitive Lie algebroid be o stmply
connected finite-type manifold. Then the Fuler characteristic

[a.0]

(A E ST (1)F dim 1M (A)

k=0
has the form

x(A) = xg (Z(~l)t dim H‘({)m)) ,
=0
where x 5 18 the Buler characteristic of the manifold B.

Let us consider some simple examples.

ExamMPLE 4.1, Suppose that the Lie algebra g, is reductive, that is, g = 202D
(0es 0o}, Where b, = [gu, 0] I8 a semisimple Lie algebra. By (3.6), each summand
in the direcs sum of vector bundles g = zg & [g, g] is ad-invariant. Therefore, an
Abelian algebroid (As — B,q,{, }o) with Ay = P @ zg ~ TB @ zg is defined.
Since the Lie algebra l, is semisimple, by the Whitehead lemma [CE] we have
H(b,) = H?(h,) = 0. Hence, if we consider the spectral sequence related to the
subbundle h = {g, g, we obtain E;"l = Fy 2 = 00, Thus, we have proved (see formula
(4.16}) that the first cohomology spaces have the form

HUA) ~ H (Ao,
HHA) = H(A),
HO(A) = H*(Ag) @ Ker dy”,
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where H*{Ay) is the cohomology space of an Abelian algebroicd. We calculate the
cohomology of an Abelian algebroid in the next section.

ExampLe 4.2, Let the base B of a quasiparallelizable Lie algebroid have the
de Rham cohomology of spherical type, i.e.,
e 1, s =01,
dim H*(B) = no> 2.
0, s #0,n,

Consider the spectral sequence related to the subbundle h = g. Formuia {4.21) has

the form )
et H' g2, 5= 0,1,
.E'/i;'" =
0, 53 0,n.

. . . i) I Y e ' .

Hence 03" = E5°, and the operator db*: EOF oy phk-utl defines o linear map-
ping

(4.23) wy: W — hhrH

where for k& < 0 the cohomology spaces h* gy “(g.) of the Lie algebra g, are
supplemented by zeros. Obviously, the spectral sequence degenerabes in the (n-+1)th
—~8

term 25y, = Ker d¢/ Rands 'ttt Therefore, we have the following formulas
for the cohomology of the considered Lie algebroid:

(4.24) H(A)~h* VEk=0,1,...,n—2,
(4.23) H™ H(A) ~ Ker w,...q,
(4.26) HA(A) = (Kerooy,) @ (h*°"/ Ranwwy_), k> n.

ExaMpLE 4.3. Suppose that the base of the considered transitive Lie algebroid
is simply connected (m: () = 0). In this case A is quasiparallelizable and £, = 0.
Therefore, we have a linear mapping

8;‘, = dg'k'. hk — hk—l @ ]IZ(B),
and HY(A) ~ Ker £,. If in addition H%(B) = 0, then
H*(A) = Ker & @ (H*(B)/Ran &,).

ExAMPLE 4.4, Suppose that the Lie algebroid A admits a flat adjoint connec-
tion V7. Also suppose that there exists an ad-invariant subbundie B, transversal
to zg {g == 29 ® ). Consider operators (4.7)-(4.10) in K** (4.2), corresponding to
the decomposition 4 = P @& zg & Bj. Then the following equalities hold:

5 = (), di = 0.

In other words, the coboundary operator {4.6) is a sum of two coboundary operators
dg and dy; the calculation of cohomolagy for such an operator falls in the well-known
procedure for the speciral sequence of a double complex (see, e.g., {BT]).

If in addition we assume that the holonomy group of this flat connection is
trivial (for example, B is simply connected), then it is easy to see that the spectral
sequence degenerates at F5* (e, d5* =0 Vr > 2), and

HE(A) = € hf @R (Ay).

brpgemh
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In some applications (see, for example, [KM]) it is important to describe the
cocycles Z%( A} of the operator ). We give some formulas for Z'(A) and Z*#(A).

By Zfd(‘f’ (th:) and Zz,:‘lt (B3') we denote the kernels (images) of the operators
dy and dy respectively. Let us fix a linear mapping cli’lz B;;"L*s — K** such that

al._aifl = Al et Lot us consider the following linear spaces:
Dy

(4:27) Lyt {ne 23} dine By},
(4.28) Ly &« {ne Lyt |6 e B:?Q'i_l and dody 6 = din},
(4.29) L9? Y {ye 197 | 6di on € By}

dy

PROPOSITION 4.12. There exist isomorphisms

a DY Ly S 2N A),
iy LS o oyt o Iyt = 23(A)

that are given by the formulas

(429) i’l (n()ﬁ + ??I.U) o e().l?]l')'l + (il’”('ffi'(] = d-lﬁlé*?,}(],l)’
(] 30) i-z (.',]i-):?, + ?,!i,l A+ 772,()) — c(l,‘Z?,’]U,‘Z + ei.l (nl‘l. . (i? lé:n(),'Z)
" + 62’0 (T]'z,i) . di—-ltsn'},l 4 d}_lrSd;l(SnO’g)

(here >t € L"),

The proof is a straightforward verification.

§5. Abelian transitive algebroids
We shali say that two Lic algebroids are isomorphic: (A -+ B,qi,{, h) L
(Ay — B, g, {, }o) if there exists an isomorphism of vector bundles f: Ay — Ay
such thatb gy o f = ¢ and

(5.0) FloBh = {fon [B)s Ve D(A).

Let (A — B,q,{, }) be an Abelian transitive algebroid. As pointed out in
Corollary 3.4, the adjoint connection in the Abelian algebroid is flat and indepen-
dent of the choice of the transversal subbundle P; we denote the adjoint connection
by V. Note that if we obtain an Abelian gransitive algebroid by restriction of the
algebroid for a regular Poisson manifold, then the adjoint connection is a Bott-type
connection [Boy, Liz] associated to the symplectic foliation.

By choosing a trangversal subbuncdle P (3.8), we oblain an isomorphism of Lie

fp . N
algebroids (A — B,¢,{, }) Lrpeg— B, (L} ), where qi Is the projection
of TB @ g on the first summand, f,c = goe @ (o — pqcy), and the bracket {, },» is
cdefined as follows:

{5.1) {uy @01, u0 @Oy} e = [y, u2] &® (.[{P(‘LM s )+ Vi, 02 — Vu._,F)[).

By Z&(g) and HY(g) we denote the cocycles and cohomology of the differential
(A.4) corresponding to the adjoint connection in the vector bundle g (see §7).
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LeMMA 5.1. {(a} R € ZZ{g)}.
(b) The cohomology class [R¥] € HE(g) is independent of the choice of a
transversal subbundle P.

Proor. (a). The equality VR® = 0 follows from the Jacoby identity for the
bracket (5.1) and coincides with the Bianchi identity for the connection in the Lie
algebroid in the sense of Mackenzie.

(b). Suppose that P and P’ are two transversal subbundles (3.8), and p and
p’ are the corresponding morphisms {3.9). We define 7' ¢ INT*B @ g) as T'(u) L
pu — P (u e V'(B)). Then

RP (ug,uz) = R™ (uy,ua) = {pu, Jpuz b — plur, ) — {pu, pug t 4 0l ey, ws)
= {puy, pus — pug}t + {pur — p'ur, p'ua} — T{|ur, ua})
= Vi, T(ue) — Vo,T{w)) = T(fw,u)) = VI uy, ug).

Hence, we have proved that B” = R”' + V7. The lemma is proved. i1

The above lemma states that the structure of an Abelian algebroid uniquely de-
termines a certain cohomology class in HE(g). The converse statement also holds.
Suppose that the vector bundle £ — B has a fat connection V. By Isoy(€) we
clenote the group of isomorphisms of the vector bundle £, preserving the connec-
tion V:

Isoy (€) = {F ¢ D(GL(E)) | V F0 = FV,0 Yu e VI(B),0 € (&)}
The group Isow (£) acts on the space HE(E) in the natwral way: F[R] = [FR].

THEOREM 5.2, (a) Fach section R € ZZ(E) determines the structure of an
Abelion algebroid (THB ® £ — B,q,{, }r), where q is the projection on the first
summand and the bracket {, Y g s defined by (5.1).

(b} The space of nonisomorphic structures of Abelian algebroids on A = TB®OE
with adjoint connection V coincides with the space of orbits for the action of the
group Isow (£} in the space HZ(E).

Proor. Statement (a) is verified by direct caleclations; it is an Abelian version
of a more general statement thalb can be found in [Ma].

{b) Let us consider two Abelian algebroids (T'B @ £ — B,q,{, }1) and
(TBdE - B,g,{, }), where ¢ is the projection on the first summand and the
brackets {, }y, {, }2 are defined by the formula
(5|l) {‘ll.g 25 8[,’&2 48 82},; = [’U,l,’Lt;g} €3] (R?;(ul,ug) -+ V-,“Og - V-u,zﬁ]),

where If; € Z5(€), 1= 1,2. Let f be an isomorphism of the vector bundle TB @ &
such that ¢f = ¢. We write

(52) flud@)=ud (T +F0), TeC(E), Fel(GLE).

It is easy to see that, by (5.0}, fin (5.2) is an isomorphism of the algebroids (5.14)
if and only if the following two conditions are satisfied:

(
(

Loy 4
L2
e

V0=V, F§ YueV'(B), 0cT(E)
Ro{ug, 1) = FRi{up,u) + V1w, ug).

(23

oy
R
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Formula (5.3) means that ' € Isog(€). Formula (5.4) means that the cohomology
classes [R)], [Ry] € HE(£) lie on the same orbit of the action of the group Isow{£).
The theorem is proved. O

COROLLARY 5.3. Let the base B be simply connected, Then the space of non-
isomorphic structures of an Abelian algebroid on the bundle TBGR™ is isomorphic

to the space

(5.5)  (H*(B)®@R™)/GL(n) = Go(H*(B)) UG (¥ (B)) U L GL(H2(BY),
where Gr(V'} is the space of k-dimensional planes in the lincar space V oand Ui is
the disjoint union.

REMARK 5.4, In fact, Corollary 5.3 says that up to an isomorphism the struc-
ture of an Abelian algebroid that has a trivial holonomy group is uniquely deter-
mined by a lincar subspace in H 2(B).

Now we calculate the cohomology of the Abelian algebroid. Consider the spec-
tral sequence (B3¢, d3') corresponding to the subbundie g (see Section 4). Then
the algebroid (Ap — B,q,{, }o) is isomorphic to the trivial algebroid (I'B —
B,idpg,[]), and K = T{Afg* @ A°T*B).

By Z%:t, B%}"’, and %,“t, we denote the cocyeles, coboundaries, and cohomology
of the operator V5* (A.4), {4.9), corresponding to the lat connection in the buzndle
/\r, g*, induced by the coadjoint connection. By Proposition 4.4, we have

(B3, dy*) = (I, 3),

where the operator 6 H %t - ff éfrz’t_l generated by the operator § in (4.10) is the
pairing of the cohomology class from Hé'ﬁ = HF (A" g*) with the cohomology class
[RP] € H%(g) (cf. Theorem 8 in [HS]). As a corollary, we obtain the following
proposition.

PROPOSITION 5.5. If [RP] =0, then H™A) = @,y Ha'

. . s, :
For each linear subspace M < 23" we define

(V16)M B ¢ e Kotbt T | et e M

Let us define the sequence of embedded linear spaces

ZSt = L o LY D D I = LY,
Lt 2 (g e L | (VY T ) N BT £}, 2 L

Since U = VHA1§ (see (4.14)), we obviously have BY' < L5 and 62y 27 ©

Lt

TugorEM 5.6. There exists an isomorphism of the following spaces:

k

(5.6) 7R Ay ~ DL,

s=={)

k
(5.7) H¥(A) ~ L% @ (LAY BES Yy @ DLy s /(B + 625 2F ).
=2
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The proof of this theorem follows from the standard consideration (see, e.g.,
[BT)) of the spectral sequenct, for the double complex (K5, d = {(~1)*V5 +8); in
particular, d¥* = 5(V'8)""" and the isomorphism iy : @, LIF7% -Zs ZE(A) is
given by the formula

k&
““(Zns ) Z 8 by SZ [ l(t) $— [ if\ l

s={} s=0 ==}

where 7**~% ¢ L7 AS * and to each n**7% the operator (—d;8)" assigns the last
element from the clnm of equalities:

6??3 L:———':ﬁ_dl(( l l[) EN 5),
S((—dy " )ty =—dy ((—d] *5)2,5* =),

6((_01;lé)-:-fjlns.kf.s):wdl((__di—lé) nsk )

RemaRK., Note that as a corollary of Theorem 5.2 we obtain that the coho-
mology space of an Abelian transitive algebroid can be calculated using only the
cohomology class [R”] ¢ HE(E), In the case of a trivial holonomy group this
means that the cohomology of an algebroid is caleulated in terms of multiplicative
properties of some subspace in H?{B). This approach has been used in a number
of papers. Formulas similar to (5.6} and (5.7) for the dimensions & = 1,2,3 were
obtained in [VEK| ;] for some kinds of regular Poisson manifoids (see the algebroid
version of these formuias in Theorem 5.7). Formulas similar to (5.7) were ob$ained

in [Xu] for any k. For the spectral sequence of regular Poisson manifold see also
[Val.

The case of a trivial holonhomy group. Let us consider the case in which
the holonomy group of the adjoint connection ig trivial. This happens if the base of
an Abelian algebroid is simply connected. In the case of an Abelian algebroid over
a nondegenerate symplectic leaf ¢ of a Poisson manifold, for a holonomy group to
be trivial it also suflices that there exists a set of Casimir functions k1, ko, ..., kn
(n = codim © = dimg,) in a tubular neighborhood of this leaf such that their
differentials are linearly independent at each point of this leaf.

Let us choose a basis of parallel sections X, Xy, ..., X, € /g,i, n = dim g,
such that the closed differential forms

(5.8) w; X, j=1,2...,n

salbisfy the conditions

[wil, ..., [wy] are linearly independent in H*(B),

(5-9) Al ¥
Wyl = dﬁq_*..i, Wopa = dﬂq+2, ey = df, ,Bj el (T B)

Obviously, Span{[w;]} C H2(B) is a subspace that determines the structure of the
considered Abelian algebroid (see Remark 5.4). In particular, if all the forms w;
are exact (g = 0), ie, if [R”] = 0, then we have &' = § = 0 and H*(4) =~
) s
@H-I—t=k(/\ gz) oy H (B)
Condition {5.9) means that L(f" = Span{ X gt n.
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THEOREM 5.7. Lot the holonomy group of the adjoint connection in an Abelian
transitive olgebroid be trivial. Then

HU(A) = L) @ HY(B),
2 ; } .y
M) = N LY W e (L0 @ 0 (B)) @ HA(B),

BB =0 = MW N\ Lo @ e L) oW e 1 (B),
where
9(B) % 1°(B) ] (Spam{[wj]}j=t,.o.0 A H°TH(B)),
W (z9' I @ HY(B),

R q
e { SOX; 8 0] | byl € HY(B), > wi A =dp, B e 1“(/\5“3."*3)},

i=1 i=1
W2 L w2/ Span {{(X; @ [wi] - Xi @ lws)) 14,5 < q}

The proof of this theorem [ollows from (5.7) and, in fact, is presented in [VE,]
for the case of regular Poigson manifolds.

6. Cohomology of homogeneous algebroids, examples

Let G a Lie group, H a closed connected subgroup, and B el g \G a right
homogeneous manifold. ‘

Let us consider a mapping 7*: C°°(B) — C=(G}, ¢ X wor, where 7: G —
B is the natural projection. Obviously, the image of 7* is the space of functions
invariant under the left action L, g == hg of H on the Lie group G.

By & we denote a Lie algebra of left-invariant vector fields on the Lie group G.
We consider a homomorphism ¢': G — V'(B),

(6.0) Lyup = (T*)“‘lﬁufr*@, wed, e l™(B).

This homomorphism can be extended in a natural way to the morphism of vector
bundles ¢: Bx G — T'B, where quu = ¢'u, and 21 G — ['(B x &} is an isomorphism
between the space of constant sections of a trivial vector bundle AYBxG B
and 7.

A transitive Lie algebroid (4 — B,q,{, }), where A = B x G, q is defined as
above, and {, } is defined by (2.3) (see Exampie 2 in section 2), will be called a
homogeneous algebroid,

Tn fact, the cohomology of a homogeneous algebroid is exactly the cohomology
of the Lie algebra G with coefficients in the G-module C*{(H\ G). Nevertheless,
we prefer to use the algebroid approach.

The following theorem gives a “lower bound” for the cohomology ol a homoge-
neous algebroid in the case when H\ G is compact.

PROPOSITION 6.1. Suppose that B = H\ G is compact and possesses a G-
invariant measure . Then the homomorphism 12 G — T'(A) induces the inclusion
of the cohomology of o Lie algebra into the cohomology of o homogeneous algebroid

(6.1) H(G) = H (A).
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Te prove this proposition we need the following simple alpebraic lemma.
E I

LuMMA 6.2, Let K be a lincar space endowed with the differential d, d* = 0,
and with a chain projection I1 K — K,

(6.2) I?e1, dfl — Id= 0.
Then there is an ezact sequence

0 HyRanl — H K — HyKer I — 0,

where Hy denoles the cohomology of d.

PROOK OF PROPOSITION 6.1. Let us consider an operator v, : C*(G) — C*(A)
such that {v.c)(au,. .. mp) = c{ui, ug,. .., up). Obviously, 2, is a chain mapping:
Dy = ,d,, where d, is the standard differential in C"(G) o, AF G,

Let us also introduce an averaging operator / pi CF(A) — C’“(A) by the formula

Py, aug) = / Slawy, oo nug e, Fe kA, u; € G
2

The image of I, is exactly the image of the inclusion 1, 50 that the operator 1, in-
duces an isomorphism of H*(G) and the cohomology of Ran T « with the differential
D {2.4).

Since B is compact, we may suppose that f gt = 1, and therefore I i = I,
Sinee 1 is invariant ander the action of G, we have

/;13 Lgwl@)pe =10 Yue G, YyeC®(B),
and therefore |
(DI f — 1.D ey, . .. o)
— f:(-at)j j” Lo, (f o, v, . .. VR, ) = 0),
=0

By applying Lemma 6.2 to the chain projection I, we complete the proof. il

The following proposition is somewhat dual to Proposition 6.2.

Prorosrrion 6.3. Supposc that 1 is compact. Then there is an isomorphism
of Grassmann algebras

(6.3] H(A) = H(G),
where H'(G) 4s the de Rham cohomology of G.

Although the proof of this proposition can be derived from [Mz] or, probably,
from another source unknown to the authors, we give a brief sketch of the proof.

PROOF. Let us define the inclusion mapping 77 C*{A) — QF (G) of C*(A)
into the space of differential forms on the group G by the formua

(e Auryoue) = 7 (flun, o)), w €@, fe CHA).
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The image of 7 is the space of differential forms QF (G, H) that are invariant under
the left action of the subgroup Hi

(6.4) Rant = Q% (G, H) L {we QMG | Liw=wVYhe .
"The inclusion mapping 7, satisfies the conditions

* . *
T D == di,

TI:ri“szi/\ﬁ?mTlﬁlfl /\T-‘i'(g-fZl .]LEC“!”(A): i=1,2,

and thus, defines an isomorphism between Grassmann algebras H*{A) and the de
Rham cohomology HE (G, H) of H-left-invariant differential forms.

By p,, we denote the Maar measure on a compact group H such that [ g, = 1.
Introduce an operator Iy: QF(G) — QF(G):

def N
I][.ﬁw = /bj;wuh.

The image of fiz is exactly the space of Hi-left-invariant differential forms (6.4). It
can be easily verified that Iy satisfies conditions (6.2). Applying Leruma 6.2, it
remains to prove that each closed differential form that lies in Ker [y is exact,

Let [w) € H¥(G), Iyw = 0. Since the subgroup I is connected, the diffeomor-
phism Lp: G — G is homotopic to the iclentity, and thus, generates an identical
mapping in H*{G):

Liw = w + diwy.

Since w = Ker fyy, we have

0= /L;‘T‘Lw,LLh = /(w + dWp )y, = W d]&";huh;

hence, w = —d f Wppty,. This completes the proof. X

REMARK 6.4. Suppose that the group G is compact. If we consider the sub-
group H = G (i.e., the case in which B is a point), we obtain the classical result
H'(G) = H' (). For another closed subgroup H C G we obtain the transitive case
of the result proved in [GW]: H'(A) = H'(G).

Let us consider the coadjoint action of & Lie group G on its coalgebra G*.
On the Euclidean space G* a linear Poisson bracket is defined (see, e.g., [Ki])
and the Lie algebroid (G x G¥ — G*,q,{, }), which can be constructed by this
Poisson bracket, falls into both examples of Section 2. For a tame orbit O let us
consider a reduced homogeneous algebroid (G x O — O, q, {, }). Each orbit O of a
coadjoint action possess the invariant measure fo = W ANwe A Awg which is the

3 {dim ) times
symplectic volume corresponding to the Kirillov symplectic form w,, (see [Kii]}.
Therefore, for each homogeneous algebroid over the compact orbit of coadjoint
action the assumptions of Proposition 6.1 are satisfied.




né under

1 the de

f'u'h, = 1

(6.4). It
na 6.2, it
xact.

iffeornor-
identical

0

> the sulb-
cal result
itive case

ebra GF.
g., Ki}
2 by this
(O let us
bit @ of a
hich is the

ee [Kii).
coadjoint

INFINITESIMAL POISSON COHOMOLOGY 351

Poisson cohomology of transitive Lie algebroids over e(3)*. Below we
calculate the cohomology for homogeneous algebroids over the orbits of the coad-
joint action of the group F(3). As will be shown, without the assumption that
the group & is compact, homogeneous algebroids over orbits of different types may
have different cohomology. This example also shows that without any additional
assumptions the inclusion (6.1) need not be an isomorphism.

Let us consider a Lie group G = E(3) of motions in the Buclidean space R?. In
N = e(3)" we introduce coordinates (z), Ty, Ty, Y1, Y2, ¥3) so that they satisfy the
following commutation relations under the linear Poisson bracket:

{051 =0, i, =1,2,3
{wa,mz}xiﬁ:s, {1132,333} =X, {iﬂ:saiﬂ'l} = T,

{-’-131:3;'2} = U3, {332,?}3} = Y1, {ifi:;,’yi} = ¥z,

The linear Poissor bracket in /' = e(3)* has two Casimir functions:
by = 2 4yt 2 ko = - oy
1= Y1+ U5+ v, 2 = Y+ ale b Tays.

There are two kinds of orbits of coadjoint action in e(3)* (sce, e.g., [MR]):
(i) nondegenerate orbits Oy 1, = {kl = (onst 0, ky = const} ~ T'9%
(it) degenerate orbits O, = {z? + af 4 2 = p? £ 0,4y, = ya = y3 = 0} = §2,

Nondegenerate case. Let us calculate the cohomology of the homogeneous
algebroid over a nondegenerate orbit Oy ,. Following [VK2] we introduce vector
fields w1, uy € V' (e(3)*) such that

(6.5) Lo (ki) = 654

(here &; is the Kronecker symbol). By (6.5) we have X; def nra Ui € Plg")
of vector fields u; to the base O g, gives the basis of parailel sections in the
bundie g*. The differential forms w; (5.8} can be determined from the relation
Duj = q*wy;, where D is the Lichnerowics differential (1.6) on the Poisson manifold

= e(3)*, ¢ N°T*N — A®TN is defined by the morphism g (1.1}, and the
na,tura} 1L5L11LL101‘1 r: NN TN — IS0 TO, ke ) gives the closed differential
forms wy = ri;.

Since the homogeneous algebroid over a nondegenerate orbit is Abelian, to
caleulate its cohomology we only need to determine the subspace Span{fw,]} in the
one-dimensional space H*(O, x,). The vector fields uy and uy (6.5) are given by
the formulas

3
=2 ( - 2J’> 9% Z "oy ?%

F=l
L3 P
U =g ZJ
e dJ,

1t is easy to calculate that

D ~ 2 1 9 /\mi) -1 i/\ d T o gy 5
2T e\ Y a2 gn, N T, Nan ) T
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where Wy = ilf (1 dys A dys -+ Yo dys A dipy -+ 4 dy1 A dys) and the restriction wy =
1y € T{A2Oy, 1,) gives the basic form in H*(O, 1,). Therefore, the considered
Lie algebroid falls in the nontrivial type of the only two possible types of Abelian
algebroids over T52. The cohomology of this Lic algebroid is easily caleulated by
using either Theorems 5.7 and 5.6 or Example 4.2. The Betti numbers

by, 4 dim ’H“'(A)

of this Lie algebroid are
((’6) by = by = by =1, by = by = be = (.

Degenerate case. Let us consider a homogenecous algebroid over the degen-
erate orbit O, = {uf + 2§ + 2} = P2 £ 0,y =12 =ys = 0} It should be noted
that cespite the fact that the vector bundle g is trivial (g has a basis of parallel

. 4 3 . .. .
sections {dy;, 7 = 1,2,8, 22520 %; dx;}), g does not admit a Hat adjolnt connection.
This follows from a fact that an invariant subbundle g' = lg, g] is isomorphic (as a
vector bundle) to 7’82 — 52, and thus, cannot have a flat linear connection.

We introduce a transversal subbundle P (3.8},

3

(6.7 Pu of {ﬁ:v = T:N l <IB-‘U: f;_j} =0,7=123 <‘6’rr:a Z:EJ ‘,“%> = U}
E 21 ;

d -
J=

for € @,. The curvature of this trangversal subbundle has the form

3

; 1
e (g, u2) = —-;;jwp(.u;,ug) "o, (ZJ, d:cj),

where w, = ;‘g(m-} divs A dzs + 2o deg Aday +ay deg A dy) is the Kirillov symplectic
form of the orbit Qp; it has a nonzerc cohomology class in H*(0,). We also
introduce sections Yo, Y1 € T(p*), n € D(A%g7),

3 b
- def &« d
68) V= ) wig g
=1 :
del & ) a s ad I
6.9 n el o DA T bag— A b EyE A =i 3
(6.9) ] Oﬂ( "Oys T Oy “ous - O S dyz».)

It is easy to calculate that these sections arc parallel with respect to the connoection

induced by the adioint connection vF{6.7).
We consicler the spectral sequence thal corresponds to the subbundle g (Kot =

A g @ A" T*O,)). The Lie algebra g. is isomorphic Lo e(2) @ R' MR, and it
turns oub that the cohemology space E?‘t = Mg, T'(Afg) can be written via parallel
sections (6.8), (6.9):

fi! = Span(Yo, Y1),

I":{l)z - Sp&ﬂ({?ﬂdo, [YU A Y‘](it:)?
BV = Span([n A Yolae, A Yildo )
EPY = Span([n A Y1 A Yola, -
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This Lie algebroid falls in the case of Example 4.2. Therefore, F* = Ef‘{:, and to
caleulate the cohomology space H*(A) it remains to obtain the linear mapping o
(4.23) that is defined by d.g"e. Since all cohomology classes of F13* can be represented
via parallel sections, the mapping d3* (4.18) coincides with & (4.10) on such sections.
It is easy to calculate that the following equalities hold:

dg’l [YE)] - {Wp}a (lg'l [Yi} = (3,
dy?[n] = 0, Ay Yo A Y] = —Y; K [w,],

B Yo An = Bw,),  &°¥iAn =0,

dy I A YL A Yo = [ A Y] [w,].

These equalities give us the mapping (4.23), and thus, the cohomology spaces
(4.24)-(4.26). We have the following Betti numbers of the Lie algebroid over O,

b[ ﬁngb;l mb{’,mbg‘:l, 1}3:2.

§7. Formal equivalence

Let @ be a symplectic manifold, £ — O a vector bundle, p: £ — O its dual,
and o: O — &% the zero section.

We say that a Polsson bracket on the total manifold £% is proper if the zero
scction o & — £* is a Poisson mapping. In other words, a Poisson bracket on
£" is proper if the image of the zero section O « £7 is a symplectic leaf, and the
induced Poisson bracket on (@ coincides with the Poisson bracket of the symplectic
structure on ©.

Proper Poisson brackets arise when we consicler the geometry in the vicinity of
a (possibly degenerate) symplectic leaf O of a Poisson manifold A', We can consider
a diffeomorphism between a tubular neighborhood of @ in N and the normal vector
bundle £* = To N /TO (note thal this diffecomorphism is not unique). The pullback
of the initial Poisson bracket to £ is a proper Poisson bracket,

By p we denote an ideal of the commutative ring C™(£*) of functions that
vanish on the submanifold O — £*. Consider a filtration of ideals

O
(7.1 CoEN = op oo’ > o™ = ﬂ 0",
k=0

where 1 = ppfl s an ideal of functions that have k zero terms in the Taylor

expansion along the fiber coordinates on £, Considering V'(£*) = B, VF(E") as
a module over the ring C™°(£%), we also can establish a Altration

VRE™) D ' VRE) o p®VR(EY) D - D p=YREN).

In what follows we are interested only in the behavior of all considered objects
in an open small neighborhood of the symplectic leaf O. We shall call g: U — g{U)
a local diffeomorphism if U is an open neighborhood in £* that contains @ and the
diffeomorphisin ¢ satisfies the condition g(©) = ©. Local diffeomorphisms form a
group.

We shall say that two proper Poisson brackets given by Poisson tensors W, W, €
VHE*Y are formally equivalent if for any p > 2, theve exists a local diffeomorphism
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g such that gi o= idep and
(7.2) 5.0 — W, € PVHE).

Let W € V#{£&*) be a Poisson tensor of a proper Poisson bracket on £x. Let
(THE* — O, 4, },¢) be the corresponding transitive Lie algebroid. Note thab the
soro section of £* induces a natural isomorphism Tpé™ = T & £*, where £ 18
identified with its vertical subbundle in TE* restricted on ©. Therefore, we also
have a natural isomorphisin THE™ = O ®E. It is easy to sce that the properness
of the considered Poisson bracket implies that g, = Ker q]zu = &, (z € O), and in
what follows we shall always identity £ and g.

Let pb: D(SPE) — T(57€) be a representation of the algebroid (THE* {, 1, a)
in the symmetric product of the vector bundle £. This representation can be given
by the following fornulas {here we consider sections of £ as sections of g C THE™):

0 f e Lgfy @ €T(ISEY), [eCP(O)=T(S'E);
pit = {a, 0},  0eTE)
pEtPe () sy) = (pfs1) 2+ 81 pP2sy, s €T(SME)
(here the dot stands for symmetric multiplication in 5rE). Define the standard

coboundary operator Dp: CF — CEH in Ck = T( AFTp€* @ §PE) associated to
the representation ph:

3

k
Dr}ﬂ(a{h . :ak) = Z("l)jpi‘n(am ce va} v aak)
j==0)

+ Z(Ml)i”n({ai,Ltj},a(,,. By B0k, ME C’;}

i<
Denote by Hg the cohomology space of the operator Dy

TusOREM T.1. Let the symplectic manifold O be compact. If two proper Pois-
son brackets on £* induce the same transitive Lie algebroid’s structure on THE®
such that

{7.3) ’Hf) =0 for any =2,
then these Puisson brackets are formally equivalent.
To give a sketch of the proof, we need the following lemmas.

LEMMA 7.Y. Two proper Potsson brackets with Poisson tensors U, Wy € V2(EX)

define the same Lie algebroid structure THE™ if and only if ¥ - & AVR(ERY

Note that p#VE(E*) [t VR(E™) = % and depote the natural projection by
Tpe JWP(ET) — CEo Let ¥ € V2(£*) be the Poisson tensor of a proper Poisson
bracket, and let Dy VE(EX) — VEFL(EY) be the corresponding Lichnerowicz oper-
ator (1.6},

LeMMA T.2. The following relations hold:

{[“m VAR (g*), P? Y (5*)]] C “p1+;rJ-r-'lerl-kzwl(8*}.’

(7.4) Dy P VRE C JTAVARN (ART
(7.5) mp D@ = Dpmpld for all Q€ WPVHE).
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Lemma 7.3. Let O be compact and X € p*Y'(E*). Then there is o one-
parameter fomily of local diffeornorphisms exp(tX) such that

1 .
exp(tX)tO =idp and % exp{tX).® = Lx exp(tX).®

for any tensor field ®.

(The last lemma follows from more general facts in the theory of ordinary
differential equations (see, for example, [NS]}.)

The decomposition of THE* induced by the zero section gives a transversal
subbundle (3.8), hence naturally defines an adjoint connection V (3.10). Recall
that a linear connection in £ — @ defines a linear connection in £* — O, hence a
decomposition of TE* into horizontal and vertical subbundles. This decomposition
defines a mapping xy . : CF — pPVH(E*) such that xg;: N{ToE") — p!(€*) maps
two summands of the decomposition Tp&* = TO ¢ £ into the horizontal and
vertical subbundles, respectively, and X,Ek satisfies tire following properties:

p @ XX.’: = idc;p
Xk s (IATIR) = X 1T A X T2

(herem; € CF1, i =1,2, and K: Cf3 x Cf2 — k11%2 is the exterior multiplication),
Xoo =P (here p: % - ),

and Xﬁo provides the isomorphism between the sections of € and fiberwise linear
functions of £7.

LEMMA 7.4. Let W € V(E*Y be o Poisson tensor of a proper Poisson bracket,
and let Wy, ¥y € V2(E*) satisfy the conditions

(7.6) o B0y~ 0 e TVHEY,  p>3,
(1.7 Uy — U e p2V2(EY).
Assume that a section n € C;m | i8 a solution of the homological equation
(78} .ijf:i'r,' = 10
Then the vector field
def
(7.9 X = X;ll,ﬂ’f
sqtisfies the condilions

(7.10) exp(tX ).y — T € 2V3HE,

(7.11) %(exp(t?{)*\lfz) e pPViHE).

(Here exp(tX) is a one-parameter group of local diffeomorphisms for the vector field
X))

Using the above lemmas, we can give the sketch of the proof of Theorem 7.1
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Proor. Let W be a Poisson tensor of a proper Poigson bracket on £ and let
¥, € V?(£") be such that W -, e pfVHE). To prove that for any p = 2 there
exists a local diffeornorphism g such that its restriction to 0 is the idensity and
(7.2) holds, we shall wse induction on p. Ifp = 2, then g = id, Assume thai there
exists a local diffeornorphism gy such that g1, = ide and g ¥ —¥ € p™ LY2(E*Y.

Let us denote Wy & g1 and o as in (7.6). Applying 7,y 1O the eqguality
[y, ¥y] = 0 and using formulag (7.6) and (7.7), we get Dy Tp-10 = . Since
Hi_ =0, the homological equation (7.8) bas a solubion; therefore, we can define
a one-parameter group ol local diffeomorphisms exp(tX) of the vector fiekd (7.9).

Define a local diffeornorphism g W exp(tX ),y © 91 Since X eprYU(EY) C
p2VH(E*), the restriction of g on @ is identity. To prove that g, ¥ — W, € HPVE(E"Y,
we show that

(7.12) B, = exp(tX )Ty — (Wy —1o) € pPVA(E), Vi e R

Note that @g = 0, and L@, = L ooxp(tX) Wy o € V2 (£7) (by Lemma 7.3).
Therefore, (7.2) holds. i

RuMARK. The proof of Theorern 7.1 is an improved version of that for the case
in which @ is a point. A theorem similar to Theorem 7.1 for the case of a single
point was proved by O. Lychagina Ly].

Now we would like to discuss briefly some facts about the cohomology space

’Hf; and to give a sufficient condition for vanishing of Hfj All facts given in §4 can
be easily generalized to the case of the cochain complex C;j and the operator Dy,

Clonsider the representation p? of the Lie algebra I'(THE™) in I{sre). Let
( L‘f}‘)’i?_, d?(‘f)-r') denote the Hochshild-Serre spectral sequence [HS) related to the ideal
I'(£) in the Lic algebra (THEE).

THeoREM 7.2. The spectral sequence orian 458y conwerges to the cohomology
i (p)r: S g gy

o R
space Hy, ..

: 16.t . . ,
Hi‘, ~ @ By for v = max(t -1, g)+ 1.
sk

Moreover, if the base O is simply connected, then

By = H' (g0, 578) ® 1(0),
where H*{O) is the de Rham cohomology of the symplectic leaf @ and H*{g., S74..)
is the cohomology of the finite-dimensional Lie algebra g, with coefficients i its
pth symmetric product.

REMARK 7.3. Note that if the “curvature” (3.11a) of the adjoint connection
in & induced by the decomposition of Tp&* vanishes (R = 0}, then the speciral

zp)r) degenerates in the second term, and given that O is simply

sequence {Ea‘j)’,,, d
comuected, we have HE = @, H (g, SP8e) @ H(O).
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CoroLLARY T.4. Let the symplectic leaf O be simply connected and
(7.15) H*(O) = 0,

also assume that the normal algebra generated in each fiber £, = g.. by « proper
Poisson brackel satisfies the condition

(7.16) H2 (g, SPg2) = 0
Then ’H;f == ().

Finaliy, observe that condition (7.16) is satisfied for each p > 0if the Lie algebra
gz 18 isomorphic to the direct sum of ils one-dimensional center and a semisimple
Lie algebra. Together with (7.15) and the assumption that © is simply connected,
this implies (7.3); however, in this case, the symplectic leaf cannot be compact.
So, to ensure a formal equivalence of two proper Poisson brackets, the vector fields
(7.9) must be complete.

Appendix. The de Rham cohomeology of flat connections

In this section we collect well-known facts [BT, GHV, Lij] about flat con-
nections and cohomology of locally constant vector bundles, which we use in the
préesent paper.

Let £ — B be a vector bundle, The operation V that to each vector feld
v € V!(B) assighs a mapping of sections V,,: ['(£) — I'{€) and satisfics the axioms

(A1) Vs bo 1 = @V 11 + Vi1, ne (&), weC™(B),
(A.2) Vo(em +me) = oVem + Vi + Lo(ein:, m,m e I'(E).

is called a connection in the vector bundle.

The connection V in the vector bundle £ naturally generates conmections in
the bundles £*, /\" &, and £/&,, where £ < £ is a V-invariant subbundle.

A section K € I'(Hom(E) & /\2 1% B), defined by the formula

(A.3) K(v1,0)n E Wy Vot = Vo, Vo ) = Vippwlh V1,02 € VI(B), 7€ T(E),

is called the curvefure of the connection V.

The connection V is called flaf if it has zero curvature. The parallel transport of
a flat connection depends only on the homotopy class of the path [Li,]; therefore, in
any simply connecied domain 7 there is a basis of parallel sections, obtained by thc
parallel transport of the basis in some fiber £, (2o € U), and the holonomy group
of the connection V is a homomorphism of the fundamental group 7 (B) into the
group GL(E,.). In particular, if the base is simply connected, then the holenomy
growup of a flat connection is trivial and the bundle £ is trivial (£ = &, x B).

Let us define a space of cochains C*(£) ! I'eE® /\k 1B} and an operator

Vi CR(E) — OFFUE), which we denote by the same symbol as the coanection,

k
Lef i -
Vn(vg, 01, ..., ) = E (=1 Vo, n{vo,vr, .o Ty, ug)
(A.4) =0
o+ E (1" ([os,vs], v, 01, D5, - By, o)

O i<jsh
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It is easy to see that the operator % has the form

VEn(v, vty -5 Uiy Vi 1)
= — Z (wl)iJrjI{('Ui,‘Uj)’l]'(’l)(],...,ﬁi,...,ﬁj,...,vk+';).
O=i<j <kt

Therefore, we have the following statement.
LimmMa AL A connection is flat if and only if V2 = 0.

For each flat connection V, by ZE&(£), BE(E), and Hy(E) = ZE | BE(£) we
denote cocycles, coboundaries, and the cohomology of the operator (A.4). The
cohomology space H (£) = @@, H & (£) depends on the choice of the flat connection
T+, We have the following statement [BT, Prop. 7.4,

LEMMA A.2. The connection ¥V has & trivial holonomy group if and only if
(A5) HE(EY~H*BY®@ &y, YE20

(here H*(B) is the de Rham cohomology of the base).

LEMMA A.3. Suppose that the base B is a fintte-type manifold. Then for any
flat connection V the space Hy(E) is finite-dimensional.

To prove Lemma A.3 we apply the Mayer-Vietoris sequence and repeat the
proof of [BY, Prop. 5.3.1] for the fact that the de Rham cohomology is finite-

dirensional.

In Section 4 we have used a slightly generalized version of Lemma, A.2, Suppose
that (4 — B,q¢,{, }) is a transitive Lie algebroid, and £ — B is a vector bundle.
We define the space of cochaing C¥(A,&) =T(€ ® A¥ A*). For cach connection V

i the bundle & we define the operator V: C*{A,£) — O A, E) as follows:

k
= def N ~
Fnon. o) S (1 Va0, o By )
(A()‘) j=0
+ Z (w'l.)"’“n({ai,aj},ao, Ve (,‘121‘, NN TR ,ak)
G<i<is<k

(here n € CF(A,€), a; € I'(4)). Obviously, the connection V is flat if and onty if
¥ = 0. By HE(A,£) we denote the cohomology of the operator (A.6).

LEMMA A.4. The holonomy group of the flat connection V is trivial tf and
only if
(A7) HE(AE) = H () ® &y VEZO,
where H*(A) s the cohomelogy of o transitive Lie algebroid A and &y, is a fiber of
the bundle £,

The proof of this lemma is simitar to that of Lemma A.2.
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