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ORBIT REDUCTION OF CONTACT IDEALS

VLADIMIR ITSKOV

ArsTRACT. Tor a givern PDE system possessing a Lie group of internal sym-
metries the orbit reduction procedure is introduced and studied. The solutions
of the reduced system are in one-to-one correspondence with the moduli space
of regular solutions of the original system. The isomorphism between the local
characteristic cohomology of the reduced unconstrained jet space and the Lic

- algebra cohomology of the symmetry group is established. The group-invariant
Puler-Lagrange equations of an invariant variational problem are described as

' & composition of the Euler-Lagrange operators on the reduced jet space and
certain other differential operators on the reduced jet space. -

1. INTRODUCTION.

In this paper we introduce the orbit reduction of partial differential equations
or, more generalfly, exterior differential systems. Recall, that an exterior differential
system [4] is a pair (M,Z) where M is a manifold, and T ¢ AT*M is a graded
differentially closed ideal. It iz a geometrical generalization of partial differential
equations {in this case M is a submanifold of the jet space and 7 is the contact
ideal).

Let & = (A,Z) be a system of partial differential equations, or more generally,
an exterior differential system, invariant under the action of a finite-dimensional
Lic group & of internal symmetries. The action of G on £ induces a G-action on
the space Sol(€) of the solutions of £. Let £ = (A, 7)) be the r-th order
prolongation of £. The orbit space A®) /G possesses the structure of an exterior
differential system indnced by the structure of £}

It turns out {see Theorem 2) that for high enough order r of prolongation the
solutions of the reduced system are in one-to-one correspondence with the moduli
space 30l(&)/G of almost all solutions of the original system. This motivates the
studying of a group-invariant PDE system through the study of its reduced exterior
differential system.

The other important reason for studying the orbit reduction is the inverse prob-
lem of reduction. By inverse reduction we mean the following., Given a certain
system of nonlinear PDEs one may ask a question whether it is an orbit reduction
of a different system of PDEs that has a simpler structure. The questions about
the solutions of the original system translate into questions about the selutions of
the “simpler” system. For example it would be interesting to identify the class of
PDEs which are the orbit reduction of an unconstrained jet space. In this case
knowing the inverse reduction gives the general solution of the original equations.

As the very first step towards the understanding thie inverse reduction, we estab-
lish the isemorphism between the local characteristic cohomology of the reduced
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Jet space and the Lic algebra cohomology of a Lie group of contact transformatioyg
acting on the jet space (see Theorem 3 in this paper). This in particular, implieg
that in order to realize a PDE system having an infinite-dimensional characteristic
cohomology as an orbit reduction of a jet space one needs to consider actions of
infinite-dimensional groups.

The other purpose of the present paper is to understand the group-invariant
variaticnal problems via the orbit reduction. As first observed by Sophus Lie (8],
the Fuler-Lagrange equations of every invariant variational problem can be Written
in terms of the differential invariants of the group action. In other words, the Euler-
Lagrange equations of a group-invariant variational problem can be pushed forward
to the orbit space. Surprisingly, up to date there was no general understanding of
the meaning of the pushed forward equations on the orbit space, nor there was 5
general algorithm of producing the group-invariant Euler-Lagrange equations.

The reduced jet space has its own calculus of variations (for example Euler-
Lagrange operators), that can be interpreted as a calculus of variations with con-
strains imposed by the syzygics of the differential invariants. It is well-understood
that all the basic ingredients of such caleulus of variations come from the edge
complex of the corresponding Vinogradov spectral sequence [13]. We show (see
‘Iheorem 4 below) that for every invariant variational problem the push-forward of
the invariant Fuler-Lagrange equations onto the orbit space is a coruposition of the
Euler-Lagrange operators on the reduced jet space and certain other differential
operators. These other diflerential operators come from the morphism of the two
Vinogradov spectral sequences of the original and the reduced jet spaces. Here
we would like to note that an alternative approach for computing invariant Buler-
Lagrange equations was recently proposed by I. Kogan and P. Olver ; sea [6] and
their contribution to these proceedings. !

The proofs of all the results given in this paper can be found in 5.

2. PRELIMINARIES: EDS AnD PDEs.

All the geometrical objects considered in this paper are of class € unless stated
otherwise. All the considered manifolds are paracompact.
Let Z = Uzep7, be a collection of homogeneous® ideals

L. = o1 ¢ NToM

In the graded exterior algebra A T; M. We shall say that a differential form w <
Q" (M) is & section of T {w & T(T)) if for every = € M, w{z) € I7. The sections of
I form a differential ideal if  dU(Z) ¢ T'(Z). We shall assurme that I’(Z) does not
contain any functions except zero.
Definition 2.1. We shall say that £ = (M, 1) is an Exlerior Differential System
(or DS for short) if the space of sections of T is o differential ideal and there
exists a closed subset Xpoumee C M of zero measure, such that Jor every connected
component U C (M ~ X} Ty = UsepT, is a subbundle of ANT*U.

In practice it is convenient to define Z by the generators of D(Z). We shall say
that I'(Z) is generated by the forms wy, .., wy {the notation is T =< wy, ..,w, >) if

lBy saying that the ideal Z; is homogeneous we mean that in the homogeneous-degree decom-
position wy == w} 4 .+ (M)

the ideal.

of w € I every homogeneous element wy € A" T*M belongs to




QORBIT REDUCTION OF CONTACT IDEALS 173

for every w € D(Z) there exist forms oy, §; € (M) such that w = Z?Ll(w@ Ay -+
dw; A B3). An EDS & is calied Pfaffian if its ideal 7 is generated by 1-forms.
Pefinition 2.2. A k-dimensional solution S € Solg(E) of £ = (M, T) is a connected
k-dimensional submanifold S — M, such that the pullback of T'(T) to 5 is zero.
Example 2.1. Jet spaces. Let N be a manifold. Consider the r-th order jet
space JLN — N of L-dimensional submanifolds together with the standard contact
ideal ) € AT*JLN {see for example [10]}. For every k-dimensional submanifold
S <5 N there is a natural lift j7ig : S — JLN such that § € 1‘(C(’")) if and only if
the puliback of § by j"ig is zerc for every k-dimensionsl submanifold 5. The lifts
478 = jig(8) are the solutions of the EDS (JLN, 25

Exan_lple 2.2. PDE systems. Let A < JIN be a subbundle of the jet space
JIN . This subbundle can be thought of as a system of partial differential equations,
whose solutions are k-dimensicnal submanifolds S < N such that 575 C A The
lifts 7S of the solutions of A are the solutions of the EDS € = (A, *C'™).

Note that since the contact ideals on the jet spaces are always generated by one-
forms, not every EDS is described by the last example. However the prolongation
[4] of every EDS is a first-order PDE system.

Recall that a {k-dimensional) prolongation [4] of £ = (M,Z) is an EDS SE) =
: (M;El),,’[;(il)), where MIEI) is a set of all k-dimensional planes in 7'M annihilating the
ideal Z:

M® = {(P,2) z€ M, PCT,M, dm{P) =k, and Z,p =0} & TM,

I;(Cl) = L?Cm .

We shall always assume that 7' : M ,51) — M is a smooth fiber bundle. Sometimes
it will mean that we remove some closed subset from M fil) to make it smooth.
For every k-dimensional solution S — M its lift %S — JL1M is a submanifold
of M él) and is a solution of the prolonged EDS & ,(cl). Conversely, given a solution
S — MFEU of the prolonged EDS the natural projection 715} ¢ M is a sclution
of the original EDS. However this projection may *lose” some of its dimension and
may happen not to be a smooth manifold anymore.
Definition 2.3. We shall say that an EDS & is of infinite type if for every r > 1
MkT) — MF(CT_U is a differentioble fiber bundle, and dim MIET) — dim MJET‘U > 0.
Example 2.3. Prolongation of PDE systems. Consider the Example 2.2
Denote by #” : JUN — N the natural projection. For each small enough open
peighborhood U7 € JLN we may introduce local coordinates z!, .., 2%, «', ., uf in
x7(U) ~ RET9 (this actually means that we artificially impose a structure of a fiber
bundie 77 {U) — R*). This choice of the coordinates on the base N induces the
canonical jet coordinates {see for example {10, o) (ot u,ug) (here I = (L1, 1)
is a multi-index of length { = |7| < r). The contact ideal ¢ is generated by the
following 1-forms:

(1) (05 = du§ — uS,dz’} g1ar
Any subbundle A — JI N can be represcnted as a zero level set of functions A, €

C°{JrN). Denote by L O®(JLN) — C™(JITIN) the total derivatives w.r.t.
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zt. The PDE system

d ‘! r+1
iy =0} TN

is called a prolongation of A (sce for example [7, 9]).

ALL) d=f { A, =0,

The prolongation of an EDS can be iterated thus giving a prolongation tower
Moo M e MP e M

where JMIEOO) = M, e ILJ,ET) is the inverse limit.

3. THE REDUCED EDS.

Let G be some pseudogroup of local diffeomorphisms acting on a manifold M.
We shall say that an EDS & = (M, T) is G-invariant if for every = € Mandge G

(2) g*l—g:ﬂ = l—m

If £ = (A, *C™)) as in Example 2.2 then the symmetry group (G is usually called a
group of internal symmetries [14, 3].

We shall always assume that the orbit space MEM /(G is again a differentiable
manifold {in what follows we shall always denote the orbit spaces by barred sym-
bols). The local coordinates on M may be identified with the G-invariant functions

on M. The local coordinates on M ,ET) are usually called the differential invariants
of order r of the G-action. ’ ~
Proposition 3.1. Let & = (M, I} be a G-invariant exterior differential system,
then there exists an czterior differential system & = (M,T), such that I is the
mazimal % ideal satisfying

(3) P*fp(x) C I Yo e M,

where p: M — M = M/G is the natural projection.

Definition 3.2. We shall call £ = (M, 1) the reduced EDS.

Example 3.1. Consider the action of the abelian group G = R® o itself {M = &?)
by translations. Define £ = (R?, < 0 >). A group action on M can be always lifted
to & group action on the prolonged manifold M ,‘ET). The two-dimensional (& = 2}
r-th prolongation of & is the jet space of two-dimensional submanifolds:

e = (JIR?,cl.

In order to coordinatize the orbit spaces Tgﬁ@, we iniroduce the coordinates (2, 2, )
in R® as well as the standard jet coordinates uy in the fibers of JIR® (here I'is a
multi-index). Note that in fact we restricted our attention to the coordinate chart
U, J B3 that has a complement of zero Borel measure in J3 3. The orbit space
U, = U, /R? is a Buclidean space with coordinates uy, where 1 < [I] <r.

Denote by

(4) yi d:e[ gy = 1, 2

2By saying that Z is maximal we mean that any other ideal that satisfies condition (3) is
contained in 7.




ORBIT REDUCTION OF CONTACT IDEALS 175

the coordinates on the orbit space JS)]RS ~ RP?. Tt is obvious that the reduced
ideal CW) is trivial, thus
£ _(RP?, <0 >).

The contact ideal on JER? is generated by the three R3-invariant 1-forms

{(5) : 0t = du — wda® — ugdz?,
(6) n? = duy — updnt — uyada?,
(7) 1’ = dug ~ wypdet — ugadz®,

Let us introduce the coordinates on the fiber of JIR? — J3R®:
1 2 3
(8) ' U= Uy, VY= Uz, U = Uia.

Direct, calculations show that the reduced ideal (2 < AT*JER3 has no 1-form
component, however it does have a nontrivial 2-form component, generated by the
2-forms s, wq € Q2(JZR3),

@y = (dy' —v3dy?) A dot + (vidy® —vidyt) Adv® =

= (w1 22 — ufz)dnz -+ (11.227'}2 - ?.L]_Q??a) Aduqy -+ (“117]3 — ulgng) Adugg,

gy == (UQdyl — 1)3dy2) A do® + (UldyQ — Udel) Adv? =

= (unug — uiy)dn® + {ugan® = u1an’) A duizz + (ur107® = wyan”) A diigg
(in fact C{2) is generated hy its 2-form component). Therefare

£~ (RP® % R, < @1, @2 >).

This example shows that although the original EDS is generated by 1-forms, the
reduced EDS does not necessarily have the same property. In particular, it may
not be a prolongation of anything. This raises the natural question of whether the
reduction procedure commutes with the prolongation. We address this question in
Theorem 1 below. )

4. 8vzyGIEs OF DIFFERENTIAL INVARIANTS.

Consider a lie group (7, acting on M and G-invariant EDS £ =(M,T). The
action of G on M prolongs to the action on M,ir). It is well-known [11, 10] that
il £ = (M,T) is an infinite-type EDS and the action is effective on open subsets
then the G-action is locally free {i.c. the stabilizers are discrete) almost everywhere
on Mé,r) for big enough . The author is not aware of any example when the
action does not eventually become free on high enough prolongation. Moreover, in
the real-analytic category there are strong indications that every effective action
bhecomes free on high enough prolongation [1}. Throughout this paper we shall
adopt the following hypothesis:
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The Main Assumptions.

1. G is a finite-dimensional Lie group and the given EDS £ is of infinite type.
2. There exists an integer 7, and a closed subset X onfree © M ,ir'*) of zero Borel

measure such that the action of (¢ is free on M, ;ETS) ~ X nonfree-

3. The quotient space M é”) = (M ;E”) ~ Xuontree }/G 18 a differentiable manifold.

4. There exists an integer r.r, and a closed subset X on C M;ET"H'U such that
every k — dimensional integral clement P of the EDS & ,ST”) that lies outside
of the set X, {ic. P € MS”H) “ Xnontr) is transversal to the orbits of
the (-action.

The last condition means that almost all the solutions of the considered EDS
are ‘“maximally noninvariant” in the classification of partially invariant solutions
due to Ovsiannikov [11]. This condition is automatically satisfied for every finite-
dimensional Lie group action on trivial EDS {M, < @ >) { note that its prolon-
gation is the unconstrained jet space). It is also satisfied for a very wide class of
PDE systems. However there exist examples of EDS whose solutions are always
nontransversal to the orbits of the action of its automorphism group. For example
if we consider the EDS (R?, < dz* Adx? >) together with the action of R? on itself,
then every two-dimensional solution of this EDS is not transversal to the orbits.

For every ry > ry we denote by n) : Mérl) — M;(;'Z) the natural projection,
and by X C M ;ET) we denote the subset where either transversality or freeness
assumption fails:

X7 = (77:?) -t (Xnonfl‘ee) U (ﬂ-:c(‘) . (X“Dntr)'

Theorem 1. Let the main assumptions hold, then for everyr > max(r,, ree)+1 the
procedure of reduction of E;ET) cammutes with the procedure of prolongation outside
of the singular set X7, i.e.

(SJSF))S) = SIE:MU, where S;(:) = (M;ET) ~ XT',I;E_T)).

Now we would like to reinterpret Theorem 1 in terms of the local coordinates.
Denote by S;EOO) = (ﬂfém),l}gwj) the infinite prolongation of £ and by p : M’;Er) —

M ,E"') denote the natural projection onto the orbit space.

Lemma 4.1. Under the main assumptions 1-3 the transversality assumption 4 15
equivalent to the following. There erists an integer ro > 0 and a closed subset
Xnontr C Mémﬂ) of zere meosure, such that every point of M;EWH) ~ Xuontr

has an open neighborhood U C Mé“f“) ~ Xuontr and differential invariants of the
G-action y', .., y" € C®{p(nl=r T (U))) that satisfy

(9) p ldy' A Ady®) ¢ DI nQr ).

Choosing the differential invariants 1 allows us to introduce total differential

operators ﬁ : C"’O(M,gr)) — Cm(M;ETH)) (here r = r¢) in the following way.

Denote by []g : ! (ﬁ{fj(c")) — Ql{ﬂ4é7'4'1))/P(I,E,T'+1)) the composition of (77+1)* and
the natural projection to the quotient. The formula {9) implies that the forms
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[p*dytlp form a basis in this quotict, Then these operators are defined by the
equality :

[
3 LAE L ¥00 r),
[p"dFlo = > T T, F e CTORT).

i=1

Note also that the operators d‘;; commute with each other.

The following lemma originally appeared in the work of A. "lresse [12] in the
context of the unconstrained jet spaces. It says that the differential invariants of
any order are generated by taking total derivatives of finitely many differential
invariants.

Lemma 4.2. For every r > max(ry,ref) + 2 the differentiol mvariants of order T
are obtained by taking the total derivatives of the invariants of order r — 1:
[

vie oMy f=fte %)

where {y*,v*) are local coordinales on M,ET_U, i=1,..k,a=1,..,4

1e)

Remark 4.3. Generally speaking the number of “dependent variables” v® nec-

essary for generating of all the other differential invariants may be less than
g = dim M — k.

We may think of (¢%,v®,vf = %?) as standard jet coordinates on J; M,ETWI).

These coordinate fanctions give the mapping 1 @ M, js") - JEM f;hfl)_ The image
A of 1, is a PDE system that can be described locally as a zero locus of functions
A, € (M S*])). These functions are sometimes called syzygies of differential
invariants [10].

Now the Theorem 1 implies that for every r 2, = max {7y, 7ef) + 2 the reduced

EDS 5,(:) is the (r — 1,)-th order prolongation of the syzygy PDE system

Ao JIMEY,
Example 4.1. Consider the cxample 3.1. Here 7y = 0, and rop = L On the
space J2R3 we introduced the lacal coordinates (', 4%, v, v%, 0%, Since n, = 3,
all the higher order differential invariants are generated by the total dervivatives of
v, Counting the dimensions shows that there arc two functionally independent
syzygies, namely

Ay =302 —0d) + ot} — vPd =0, Ay = v? (0} —vd) +o*ud ~ vl =0,
a _ dv*
{here v = 70 ).

5. MODULI SPACE OF SQLUTIONS AND THE REDUCED EDS

Let C be a Lie group acting on M. Let & = (M, T) bea (7-invariant EDS of infinite
type. Denote by Solx(€) the space of k-dimensional solutions of £. We shall say
that a solution S, & SOIk(SF(CT)) is regulor (the notation is Sy € SU]};,(%(E;E_T), GY) il S,
is transversal (o the orbits of the G-action on ]VI;ET} {clearly then the lifts of S to
the higher prolongations are aiso regular).

Tor every r > 0 and every solution S, € Solg{& I,Er)) we may consider the projec-

tion S, = p(S,) C M,gﬂ of § onto the orbit space. If the solution S, is regular then
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S‘r is a k-dimensional submanifold and is a solution of the reduced EDS 5(; It

turns out that on "high enough” prolongation we c*an also lift a solution of S
a dim (-parametric family of regular solutions of Ek_

Theorerm 2. For every v > max(ry,ree) + 1 the moduli space of regular solutiong
of the pmlongcd EDS is isomorphic to the solutions of the reduced EDS:

solreeel” @y

~ (’F"
a _SOlkgk .

The procedure of lifting a k — dimensional solution § «<» M of the reduced

EDS 5(1‘) can be described as the following. Consider p"l(S’) < J\ffér). Define a
dlffexem ial ideal 7(S) < AT*p~"(S) on the manifold p~'{S) by pulling back the
ideal on M,g 7,
TS =T

Recall that an EDS (M, .7) is called Frobenius if it is algebraically generated hy its
1-form component. In this case the manifold M is foliated by solutions of (A, 7).
Proposition 5.1, Let v > max{rs;,rer) + 1, then the exterior differential system
(p~1(5), T(5)) is Frobenius, The solulions of this EDS are transversal to the orbits
of the G-action and form e foliation of codimension dim .

Clearly, the solutions of this Frobenius EDS are the desired solutions of 53)
Thus in practical terms the reconstruction of a solution of the original EDS from
the solution of a reduced one consisis of solving a sequence of k gystemns of ODEs,

6. CHARACTERISTIC COHOMOLOGY OF THE REDUCED JET SPACES.

Let a Lic group ¢ act on a manifold M. Suppose that the main assumptions
1-3 hold with regard to the trivial EDS £ = (M, < 0 >). By virtue of Theorem 1

we may regard (](OOJM C2)) as the inlinite prolongation of the reduced EDS

&= (J(mdx(T"TCFH M, Clmax(rsre}+1)) (or, equivalently, the infinite prolongation
of a syzygy PDE systcm).

The fact that & is a reduction of an unconstrained jet space allows us to deduce
everything about the solutions of &;, since every solution of & is an image of a

solution of (J#M,C} under the mapping p : JPM — JI,ET")M Therefore it
is important to investigate the conditions under w nch a given BDS & can be a
reduction of an unconstrained jet space.

It turns out that the local characteristic cohomology of the reduced EDS & is
isomorphic to the Lie algebra cohomology of the Lie group .

Denote by #2° : J2°M — JI'M the natural projection, and r; = max{r, rer).

Theorem 3. For every open subset U/ C JEM ~po ('ﬁff)“‘l(X"l), such that
ﬁ';’c’ff is contractible for every v > 1y, the choracteristic cohomology of £, vver Uis
isomerphic to the Lie algebra cohomology of G in dimensions less than k:

(10) H Qo (U), do) = HY(g) Vi <k,

where Qhor(fj) = Q"‘(U}/F(C(OO)) dy is the horizontal differentiol induced on the
horizontal forms 2, (U), and H(g) is the Lic algebra cohomology of the Lie

group 5.
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7. INVARIANT VARIATIONAL PROBLEMS.

" Consider an unconstraited infinite jet space J2° M of k-dimensional submanifolds
of a manifold M. Denote by (E7¢ d®?) the Vinogradov spectral sequence [13]
corresponding to the decreasing filtration

FQUI M) = QI M) 0 AT ().

It is well-known [13, 2] that the k-dimensional variational problems on M can be
identified with the space

B = (g (D) + a0 (U ) )

and the Euler -Lagrange operator is d{lj’k : E(f’k -3 Ell‘k, where the quotient

EMF = peey n @R (g M)/ (APD(E)  dT (e
1

has a structure of a free module over the ring of functions on the infinite jet J7M.

For a given A € QF(JIM) one may consider the Euler-Lagrange system
EL(X) — J2" M defined as the zero locus of dYF A9 (we dencte by [A12* the equiv-
alence class in E? ’k}. If {x?,u®,u%) are the standard jet coordinates in some open
neighborhood of J°M, da = dzlA--Adz¥, and A = Ldz+D(C))+dOF 1 (T M)
is the variational problem then the Buler-Lagrange system has the form

(11} EL(A) e {E(X(L) =0, a=1,.,0= dim M — k:}} where
En(lL) = i (gl)iflfi_!il_ 9 .
(&3 _s — dTI au? y
|Ti=0
q
(12) dA =3 EL(L)§% A dz + dT{C)) + APT(CE),
ce=1
k

and the forms [#% A dz];™ give the basis in the free module B}

(Here %7 are the total derivatives w.r.t. multi-index )

Let a Lie group G act on the manifold M. Since the G-action on QLI M)
preserves the contact ideal, it induces the action on B
Definition 7.1. We shall say that A ¢ QF(J2M) represents an invariant varic-
tional problem if (NS* is G-invariant.

Tt can be shown that for every invariant variational problem [A}(f’k there exists a
differential form A = Ldy* A - A dy* € QF(TF M) such that [A2F = [p*j\]?‘k. The
form A in its turn defines a variational problem on 7W {that is a class in E‘?‘k of
the Vinogradov spectral sequence of W) Therefore it is desirable to understand
EL{A) in terms of the calculus of variations on the reduced jet space JPM.

It is well-known [12, 10] that in every small neighborhood of JEPM there exist
functions (y',.., %, v, .., v?) such that any other differential invariant is a function
of the y* and the total derivatives

o A
I d’y]
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of v® w.r.t. ¥* (sec Lemma 4.2). Moreover, as a consequence of Theorem 1, we have

(T, 010y = (T M, C00) ) = (Al ey,

where A(e) &5 JeeRAHT s the infinite prolongation of a certain PDE system
A e JPRFTE
In local coordinates the Euler-Lagrange equations on
NE VIS ol L]
may be written in the same fashion as on the unconsirained jet space JPRA*HE
More precisely, given a variational problem
A== Lyt A ndy® € QF (TR M),
one can find & function Ly (y*,v¢) € Coo(JEPR* ) such tlnt its restriction to Afee)
is equal to L (12 L; = L), then

q
(13) Z LY§% A dy + dU(CL)) + A2D(C (D),

where 6% = dv® — o2dy®, dy = dy' A - A dy*, and the expression staying in the
place of the BEuler-Lagrange operator is defined as

aft iaL

I

Hn_

{14) E(L)=

and depends on the particular choice of the function L; .
Denote the“nonsingular” reduced infinite jet space as

U= ST M ~ po(a?)THX™).

Theorem 4. Suppose that the main assumptions 1-3hold with regard to the trivial
EDS (M,< 0 ). Then there exist total differential operators on the reduced jet
space A% 1 Q) — O=(U>),

- |

a _ al®™
CR S L
0<|If<r, 1

(here AY ¢ C®(U*), «=1,.,q=dimM —k, a=1,..,4) such that every

invariant variational problem (X" = [p*Ldy* A-- A dyk](l)’k has its Buler-Lagrange
sysiemn as

(15} EL{\) = p~ 1({2,4%”5 = a:l,..,q}),

where I, are the Buler-Lagrange operators (14) on the reduced jet space.
Remark 7.2. Despite the fact that the Euler-Lagrange expressions defined in
the formula (14) depend on the choice of the Lagrangian Ly (if the number of
independent variables is bigger than one), the expression 377 A2k, (L) does not
depend on this freedom.
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A practical algorithm for computing the operators A% and some examples of
computations are given in paper 15]. )
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