
Hyperplane Neural Codes and the Polar
Complex

Vladimir Itskov, Alexander Kunin, and Zvi Rosen

Abstract Hyperplane codes are a class of convex codes that arise as the output of a
one layer feed-forward neural network. Here we establish several natural properties
of stable hyperplane codes in terms of the polar complex of the code, a simplicial
complex associated to any combinatorial code. We prove that the polar complex of
a stable hyperplane code is shellable and show that most currently known properties
of hyperplane codes follow from the shellability of the appropriate polar complex.

1 Introduction

Combinatorial codes, i.e. subsets of the Boolean lattice, naturally arise as outputs
of neural networks. A codeword σ ⊆ [n] def= {1, . . . , n} represents an allowed
subset of co-active neurons, while a code is a collection C ⊆ 2[n] of codewords.
Combinatorial codes in a number of areas of the brain are often convex, i.e. they
arise as an intersection pattern of convex sets in a Euclidean space [17, 20, 24].
The combinatorial code of a one-layer feedforward neural network is also convex,
as it arises as the intersection patterns of half-spaces [13, 25]. It is well-known
that a two-layer feedforward network can approximate any measurable function
[11, 19], and thus may produce any combinatorial code. In contrast, the codes of
one-layer feedforward networks are not well-understood. The intersection lattices of
affine hyperplane arrangements have been studied in the oriented matroid literature
[1, 2, 4]. However, combinatorial codes contain less detailed information than
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oriented matroids, and the precise relationship is not clear. We are motivated by
the following question: How can one determine if a given combinatorial code is
realizable as the output of a one-layer feedforward neural network?

We study stable hyperplane codes, codes that arise from the intersection patterns
of half-spaces that are stable under certain small perturbations. The paper is
organized as follows. Relevant background and definitions are provided in Sect. 2.
In Sect. 3, we establish a number of obstructions that prevent a combinatorial code
from being a stable hyperplane code. In Sect. 4, we show that all but one of the
currently known obstructions to being a stable hyperplane code are subsumed by
the condition that the polar complex of the code, defined in Sect. 2.3, is shellable.
Lastly, in Sect. 6 we show how techniques from commutative algebra can be used to
computationally detect the presence of these obstructions.

2 Background

2.1 Stable Hyperplane Codes

We call a collection U = {Ui} of n subsets Ui ⊆ X of a set X an arrangement
(U,X). Note that we do not require that

⋃
i∈[n] Ui = X.

Definition 1 For σ ⊆ [n], let AU
σ denote the atom of (U,X)

AU
σ

def=
(⋂

i∈σ
Ui

)
\
⋃

j #∈σ
Uj ⊆ X, where AU

∅
def= X \

⋃

i∈[n]
Ui.

The code of the arrangement (U,X) is defined as

code(U,X)
def= {σ ⊆ [n] such that AU

σ #= ∅} ⊆ 2[n].

A realization of a code C is an arrangement (U,X) such that C = code(U,X). The
simplicial complex of the code, denoted"(C), is the closure of C under inclusion:

"(C) def= {τ | τ ⊆ σ for some σ ∈ C}.

Note that for C = code(U,X), the simplicial complex of the code is equal to the
nerve of the corresponding cover:

"(code(U,X)) = nerve(U)
def=

{
σ ⊆ [n] |

⋂

i∈σ
Ui #= ∅

}
.

A natural class of codes that arises in the context of neural networks is the class
of hyperplane codes [13]. A hyperplane is a level set H = {x ∈ Rd | w · x−h = 0}
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of a non-constant affine function. An oriented hyperplane partitions Rd into three
pieces: Rd = H+ %H %H−, whereH± are the open half-spaces, e.g. H+ def= {x ∈
Rd | w · x − h > 0}.
Definition 2 A code C ⊆ 2[n] is a hyperplane code, if there exists an open convex
subset X ⊆ Rd and a collection H = {H+

1 , . . . , H+
n } of open half-spaces such

that C = code({H+
i ∩ X},X). With a slight abuse of notation, we denote this

arrangement of subsets of X by (H,X), thus code(H,X) = code({H+
i ∩X},X).

Hyperplane codes are produced by one-layer feedforward neural networks [13],
where the convex set X is often the positive orthant Rd

≥0. A well-behaved subset
of hyperplane codes are the stable hyperplane codes. Informally, these are codes
that are preserved under small perturbations of the hyperplanes and the convex set
X. These perturbations correspond to perturbations of the parameters of the neural
network [25], i.e. the vectors (wi, hi) ∈ Rd × R in our context. Thus, we restrict
our attention to the class of stable hyperplane codes.

Definition 3 An arrangement (H,X) is stable if X is open and convex, and the
hyperplanes have generic intersections inX, that is, ifX∩Hσ

def= X∩⋂i∈σ Hi #= ∅,
then dimHσ = d − |σ |.

We call a code C a stable hyperplane code if there exists a stable arrangement
(H,X) such that C = code(H,X).

Stable arrangements are robust to noise in the sense that all atoms have nonzero
measure.

Lemma 1 If (H,X) is a stable arrangement, then every nonempty atom AU
σ of the

coverU = {
H+

i ∩X
}
has a nonempty interior.

Proof Let Aσ be a nonempty atom of the stable arrangement (H,X) and consider
a point x ∈ Aσ . Let τ = {j | x ∈ Hj } index the set of hyperplanes on which x

lies. Then x has an open neighborhood V inside X ∩ (
⋂

i∈σ H
+
i ) ∩ (

⋂
j #∈σ∪τ H

−
j ).

By genericity, the set {wi | i ∈ τ } is linearly independent. Therefore, there exists
some v ∈ Rd such that wi · v < 0 for all i ∈ τ . For sufficiently small ε > 0,
y = x + εv ∈ V ; therefore for any i ∈ τ,

wi · y − hi = wi · (x + εv)− hi = wi · εv < 0,

and thus y ∈ X ∩ (
⋂

i∈σ H
+
i ) ∩ (

⋂
j #∈σ H

−
j ), which is the interior of Aσ . *%

Example 1 The code C1 = {1, 12, 123, 2, 23} is a stable hyperplane code; a
realization is illustrated in Fig. 1a. To avoid notational clutter, we adopt the
convention of writing sets without brackets or commas, so the set {1, 2} is written
12.
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Fig. 1 (a) Stable arrangement (H, X) with atoms labeled by their corresponding codewords. (b)
The polar complex %(code(H, X)), defined in Sect. 2.3

2.2 Bitflips and Stable Hyperplane Codes

The abelian group (Z2)
n acts on 2[n] by “flipping bits” of codewords. Each generator

ei ∈ (Z2)
n acts by flipping the i-th bit, i.e.

ei · σ def=
{
σ ∪ i if i /∈ σ
σ \ i if i ∈ σ.

This action extends to the action of (Z2)
n on codes, with g ·C = {g ·σ | σ ∈ C}. The

group (Z2)
n also acts on oriented hyperplane arrangements. Here each generator ei

acts by reversing the orientation of the i-th hyperplane:

ei ·H+
j

def=
{
H+

j if i #= j

H−
j if i = j.

One might hope that applying bitflips commutes with taking the code of a
hyperplane arrangement, but this is not true for arbitrary hyperplane codes.

Example 2 ConsiderH+
1 ,H+

2 ,H+
3 ⊆ R2, withH+

1 = {x+y > 0},H+
2 = {x−y >

0}, and H+
3 = {x > 0}, illustrated in Fig. 2a. By inspection, C2 = code(H,R2) has

codewords {∅, 1, 13, 123, 23, 2}. Meanwhile,

code(e3 ·H,R2) = {3, 13, 1, 12, 2, 23,∅} = e3 · code(H,R2) ∪ {∅}.

The extra codeword appears because after flipping hyperplane H3, the origin no
longer belongs to the same atom as the points to its left, and thus produces a new
codeword, see Fig. 2b.

Nevertheless, the group action does commute with taking the code of a stable
hyperplane arrangement.
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Fig. 2 (a, b) The action of (Z2)
n does not necessarily commute with taking the code of a non-

stable hyperplane arrangement. (c) The polar complex %(code(H, X)) for the arrangement in
panel (a) is an octahedron missing two opposite faces. (d) A stable realization of code(e3 ·H, X),
obtained from panel (b) by translating H3 to the left

Proposition 1 If (H,X) is a stable arrangement, then for every g ∈ (Z2)
n, (g ·

H,X) is also a stable arrangement and

code(g ·H,X) = g · code(H,X). (1)

Proof Since the action of (Z2)
n does not change the hyperplanes Hi (only their

orientation) nor the set X, the stability is preserved. By Lemma 1, each atom
of (H,X) has a nonempty interior; this interior is not changed by reorientation
of the hyperplanes. Thus, atoms are neither created nor destroyed by reorienting
hyperplanes in a stable arrangement; only their labels change, and code(g ·H,X) =
g · code(H,X). *%

2.3 The Polar Complex

The invariance (1) of the class of stable hyperplane codes under the (Z2)
n action

makes it natural to consider a simplicial complex whose structure is preserved by
bitflips. The simplicial complex of the code is insufficient for this purpose: for any
nontrivial code C ⊆ 2[n] with a nonempty codeword, the simplicial complexes of the
codes in the (Z2)

n-orbit of C will include the full simplex on n vertices, regardless
of the structure of "(C).
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We denote by [n] def= {1, . . . , n} and [n] def= {1, . . . , n} two separate copies of the
vertex set. Given a code C ⊆ 2[n], define the polar complex, %(C), as a pure (n−1)-
dimensional simplicial complex on vertex set [n] % [n] with facets in bijection with
the codewords of C.
Definition 4 Let C ⊆ 2[n] be a combinatorial code. For every codeword σ ∈ C
denote

&(σ )
def= {i | i ∈ σ } % {ī | i #∈ σ } = σ % [n] \ σ

and define the polar complex of C as

%(C) def= "({&(σ ) | σ ∈ C}).

Continuing Example 1, the polar complex of C1 = {1, 12, 123, 2, 23} is given
by %(C1) = "({12̄3̄, 123̄, 123, 1̄23̄, 1̄23}). It is depicted in Fig. 1b as a subcomplex
of the octahedron. The polar complex %(2[3]) consists of the eight boundary faces
of the octahedron; generally, the polar complex of the code consisting of all 2n

codewords on n vertices is the boundary of the n-dimensional cross-polytope.
The polar complex of code C2 in Example 2 is depicted in Fig. 2c. Note that it

follows from Theorem 4 that C2 is not a stable hyperplane code, due to the structure
of %(C2). In contrast, while Fig. 2b depicts a non-stable arrangement, the code of
that arrangement has a stable realization depicted in Fig. 2d.

The action of the bitflips (Z2)
n on the boolean lattice induces an action on the

facets of the polar complex, so that g · &(σ ) = &(g · σ ). In particular, %(g · C) =
g ·%(C), and the complex %(g ·C) is isomorphic to %(C). The Stanley-Reisner ideal
of %(C) is closely related to the neural ideal, defined in [9]; this will be elaborated
in Sect. 6. Moreover, in the case of stable hyperplane codes, %(C) has a simple
description as the nerve of a cover:

Lemma 2 If C = code(H,X) is the code of a stable hyperplane arrangement, then

%(C) = nerve({H+
i ∩X,H−

i ∩X}i∈[n]) (2)

Proof Consider a maximal face &(σ ) ∈ %(C). By Lemma 1, Aσ has nonempty
interior given by X∩⋂

i∈σ H
+
i ∩

⋂
j #∈σ H

−
j , hence&(σ ) ∈ nerve({H+

i ∩X,H−
i ∩

X}i∈[n]). Likewise, if F is maximal in the complex nerve({H+
i ∩X,H−

i ∩X}i∈[n]),
the subset consisting of unbarred vertices in F is a codeword as the corresponding
atom is nonempty. *%
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3 Obstructions for Hyperplane Codes

Here we describe several major hyperplane obstructions, the properties of a
combinatorial code that are necessary for it to be realized by a stable hyperplane
arrangement.

3.1 Local Obstructions and Bitflips

A larger class of codes that arises in the neuroscience context are the open convex
codes [7–9, 13]. A code C ⊂ 2[n] is called open convex if there exists a collection
U of n open and convex sets Ui ⊆ X ⊆ Rd , such that C = code (U,X). Not every
combinatorial code is convex. One obstruction to being an open convex code stems
from an analogue of the nerve lemma [3], recently proved in [6]; see also [21].

Recall the link of a face σ in a simplicial complex " is the subcomplex defined
by

linkσ"
def= {ν ∈ " | σ ∩ ν = ∅, σ ∪ ν ∈ "}.

When σ #∈ code(U,X), yet σ ∈ nerve(U), the subset Uσ
def= ⋂

i∈σ Ui is covered by
the collection of sets

{
Uj ∩ Uσ

}
j #∈σ . It is easy to see that in this situation,

linkσnerve(U) = nerve({Uj ∩ Uσ }j #∈σ ),

see e.g. [7, 8, 13].

Definition 5 A pair of faces (σ, τ ) of a simplicial complex" is a free pair if τ is a
facet of ", σ " τ , and σ #⊆ τ ′ for any other facet τ ′ #= τ . The simplicial complex

delσ"
def= {ν ∈ " | ν #⊇ σ }

is called the collapse of " along σ , and is denoted as " ↘σ delσ". If a finite
sequence of collapses of " results in a new complex "′, we write " ↘ "′. If
"↘ {}, we say " is collapsible.

Note that the irrelevant simplicial complex {∅}, consisting of a single empty face,
is not collapsible, as there is no other face properly contained in ∅. However, the
void complex {} with no faces is collapsible.
Lemma 3 ([6, Lemma 5.9], [21]) For any collection U = {U1, . . . , Un} of open
convex sets Ui ⊂ Rd whose union

⋃
i∈[n] Ui is also convex, its nerve, nerve(U), is

collapsible.

Corollary 1 ([6, Theorem 5.10]) Let C = code(U,X) with each Ui ⊆ X ⊆ Rd

open and convex. Then linkσ"(C) is collapsible for every nonempty σ ∈ "(C) \ C.
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The last observation provides a “local obstruction” for a code C being an open
convex code: if a non-empty σ ∈ "(C) \ C has a non-collapsible link, then C is
nonconvex. It had been previously known (see, for example, [13, Theorem 3]) that
linkσ"(C) is contractible under the hypotheses of Corollary 1. Since collapsibility
implies contractibility but not vice versa, we refer to a face σ ∈ "(C) \ C with
non-collapsible link as a strong local obstruction; if linkσ"(C) is non-contractible,
we refer to σ as a weak local obstruction.

Half-spaces are convex, thus local obstructions to being a convex code are also
obstructions to being a hyperplane code. Therefore Proposition 1 implies a much
stronger statement. Not only are local obstructions in C forbidden, we must also
exclude local obstructions in g · C for all bitflips g ∈ (Z2)

n, since g · C is also a
stable hyperplane code. We make this precise below.

Definition 6 Let g ∈ (Z2)
n and τ ⊆ [n] be a pair such that linkτ"(g · C) is not

collapsible (respectively, contractible) and τ /∈ g · C. Then (g, τ ) is called a strong
(resp. weak) bitflip local obstruction.

Theorem 1 (Bitflip Local Property) Suppose C is a stable hyperplane code. Then
C has no strong bitflip local obstructions.

Proof Halfspaces are convex, thus C has no strong local obstructions. By Proposi-
tion 1, g ·C is a stable hyperplane code for all g ∈ (Z2)

n. Hence, g ·C has no strong
local obstructions. *%

The nomenclature of “weak” and “strong” local obstructions signifies that a code
with no strong local obstructions has no weak local obstructions, but generally not
vice-versa. In particular, a stable hyperplane code also has no weak bitflip local
obstructions.

Example 3 The code C3 = {∅, 2, 3, 4, 12, 13, 14, 23, 24, 123, 124} is realizable
by open convex sets in R2 (see Fig. 3), and thus it cannot have local obstructions to
convexity. Flipping bit 2 yields

e2 · C3 = {2,∅, 23, 24, 1, 123, 124, 3, 4, 13, 14}.

Fig. 3 An open convex
realization of C3 with
X = R2

U4

U2

U1 U3
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The new simplicial complex "(e2 · C3) has facets 123 and 124. The edge 12 is not
in the code and link12"(e2 · C3) is two vertices; therefore, (e2, 12) is a bitflip local
obstruction and C3 is not a stable hyperplane code.

It is worth highlighting an essential feature of the polar complex that makes it
a natural tool for studying hyperplane codes, in light of the bitflip local property.
For every g ∈ (Z2)

n, the simplicial complex "(g · C) is isomorphic to an induced
subcomplex of %(C): Let σ denote the support of g and define

%(C)|([n]\σ )%σ def= {F ∈ %(C) | F ⊆ ([n] \ σ ) % σ }.

Then %(C)|[n]\σ%σ ∼= "(g · C), with the isomorphism given by “ignoring the bars,”
i.e. i 0→ i for i ∈ [n] \ σ and j 0→ j for j ∈ σ . Thus we can find bitflip local
obstructions directly in the polar complex as follows.

Proposition 2 Let C ⊆ 2[n] be a code, g ∈ (Z2)
n with σ its support, and let

τ ⊆ [n]. Then (g, τ ) is a bitflip local obstruction for C if and only if

g · τ % [n] \ g · τ #∈ %(C) and linkg·τ%(C)|([n]\σ )%σ is not collapsible.

Proof Note that g · τ % [n] \ g · τ #∈ %(C) if and only if τ #∈ g · C. The complex
%(C)|([n]\σ )%σ is isomorphic to "(g · C), and

linkτ"(g · C) ∼= linkg·τ (%(C)|([n]\σ )%σ ).

Hence, the conditions of the proposition are equivalent to the conditions of
Definition 6. *%

3.2 Spherical Link Obstructions

Here we introduce another obstruction that can be detected via the polar complex of
stable hyperplane codes. We use the following notation to aid our discussion. For a
face F ∈ %(C), we write F = F+ % F− to denote the restrictions of F to [n] and
[n]. The support of F is F = F+ ∪ F−, the set of (barred or unbarred) vertices
appearing in it.

For stable arrangements (H,X), Lemmas 1 and 2 allow us to translate between
faces of %(code(H,X)) and convex subsets of X as follows: The face F = F+ %
F− ∈ %(C) corresponds to the open convex set

RF = X ∩
( ⋂

i∈F+
H+

i

)
∩
( ⋂

j∈F−
H−

j

)
.
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Note that for a facet F = σ % ([n] \ σ ) of the polar complex, RF is precisely the
interior of the atom Aσ . In addition, it is easy to see that linkF%(C) = %(C′) for
some C′ ⊆ 2[n]\F . Therefore, we consider the topology of the covered subset of RF .
We show the positive and negative halfspaces indexed by the complement of F will
cover either all of RF or all but a linear subspace of RF . The following proposition
describes the combinatorics of the nerve of this cover.

Proposition 3 Let (H,X) be a stable arrangement, and let RF be a nonempty
region with |F | < n. Then ({H+

i ∩RF }i #∈F ,RF ) is a stable arrangement. Moreover,
the nerve({H+

i , H−
i }i #∈F ) is either collapsible or is the polar complex of the full

code on the vertices [n] \ F , i.e. nerve
({H+

i , H−
i }i #∈F

) = %
(
2[n]\F

)
.

Proof Denote ν def= [n] \F . First we verify the arrangement ({H+
i ∩RF }i∈ν, RF ) is

stable. The region RF is open and convex, and intersections of hyperplanes in RF

lie in X, so they already satisfied the genericity condition.
ConsiderHν∩RF ; if it is empty, then the union of the positive and negative open

half-spaces indexed by ν is all of the convex set RF , and so by Lemma 3 the nerve
is collapsible. IfHν ∩RF #= ∅, by stability, we have dimHν = d− |ν|. In this case,
the linear independence of {wi | i ∈ ν} ensures all of the 2|ν| intersection patterns
of halfspaces, i.e. the nerve is %(2ν) = %(2[n]\F ). *%
Definition 7 Let F ∈ %(C) be a non-maximal face such that linkF (%(C)) is neither
collapsible nor linkF (%(C)) = %(2[n]\F ). We call F a sphere link obstruction.

By Lemma 2, we have linkF%(C) = nerve({H+
i ∩ RF ,H

−
i ∩ RF }i #∈F ). This,

together with Proposition 3, imply

Theorem 2 (Sphere Link Property) Suppose C is a stable hyperplane code. Then
C has no sphere link obstructions.

Example 4 Continuing Example 2, we consider the polar complex %(C2) for the
non-stable arrangement (H,X) in Fig. 2a. This complex is illustrated in Fig. 2c.
The face ∅ is a sphere link obstruction: link∅%(C2) = %(C2), and this complex
is neither the complex %(2[3]), which would have 8 facets, nor is it collapsible.
Therefore, C2 is not a stable hyperplane code.

3.3 Chamber Obstructions

The intuition behind the third obstruction in this section concerns maximal hyper-
plane intersections. If a collection {Hi}i∈σ of hyperplanes intersects in a point
(dimHσ = 0), then that point has fixed position relative to other hyperplanes. In
particular, there cannot be two distinct regions defined by the other hyperplanes that
contain that point. More generally, ifHσ #= ∅ is a maximal non-empty intersection,
then it intersects only one atom of the arrangement {Hj }j #∈σ of the remaining
hyperplanes.
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Definition 8 The geometric chamber complex of a hyperplane arrangement H
relative to an open convex set X, cham(H,X), is the set of σ ⊆ [n] such that
Hσ ∩X #= ∅. By convention,H∅ = Rd so ∅ ∈ cham(H,X) for all (H,X).

The combinatorial chamber complex of a code C, denoted cham(C), is given
by the set of σ ⊆ [n] such that there exists T ∈ %(C) with T = [n] \ σ and
linkT%(C) = %(2σ ). We call such a subset T a chamber of σ .

Both cham(H,X) and cham(C) are simplicial complexes: the former because
for any i ∈ σ , Hσ\i ⊇ Hσ ; the latter because if linkT %(C) = %(2σ ) then
linkT∪i = %(2σ\i ). For stable hyperplane codes, the facets of these simplicial
complexes correspond to maximal hyperplane intersections.

Example 5 Returning to the stable code C1 from Example 1, the maximal
faces of cham(C1) are 2 and 13. This is because link13̄(%(C1)) = %(2{2}) and
link2(%(C1)) = %(2{1,3}). By inspection, these are also maximal faces of the
geometric chamber complex cham(H,X) for the arrangement in Fig. 1a.

Proposition 4 For a stable arrangement (H,X), the associated chamber
complexes coincide, cham(H,X) = cham(code(H,X)). Moreover, for C =
code(H,X), each facet σ of cham(C) has a unique chamber T ∈ %(C).
Proof Let (H,X) be a stable pair and set C = code(H,X). Suppose σ ∈
cham(H,X), so Hσ ∩ X #= ∅. Then, for any atom Aτ of the arrangement
({H+

i ∩X}i #∈σ ,X) such thatHσ∩Aτ #= ∅, the set T = τ%([n] \ σ ) \ τ is a chamber
of σ , hence σ ∈ cham(C). For the reverse containment, suppose σ ∈ cham(C) has
chamber T . Then

%(2σ ) = linkT%(C) = %(code({H+
i ∩ RT }i #∈σ , RT )),

meaning the hyperplanes {Hi}i∈σ partition RT into the maximal number of regions,
i.e. it is a central arrangement. Thus Hσ ∩ RT #= ∅ and thereforeHσ ∩X #= ∅ and
σ ∈ cham(H,X).

Now consider σ a facet of cham(C). Because C = code(H,X), the intersection
of hyperplanes Hσ ∩ X does not meet any other hyperplanes inside X. Therefore,
it is interior to only one atom of the arrangement ({H+

j }j #∈σ ,X); the face in %(C)
corresponding to this atom is the unique chamber T . *%

We reformulate Proposition 4 into our third and final obstruction to hyperplane
codes.

Definition 9 Let σ ⊆ [n] be a maximal face of cham(C) such that there exist two
faces T1 #= T2 ∈ %(C) with linkT1%(C) = linkT2%(C) = %(2σ ). Then we call σ a
chamber obstruction.

Theorem 3 (Single Chamber Property) Suppose C = code(H,X) is a stable
hyperplane code. Then C has no chamber obstructions.

Example 6 The code C3 from Example 3 also has a chamber obstruction, in the
form of σ = {1, 2}. There are two faces {3̄, 4} and {3, 4̄} with link in %(C3) equal to
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the full polar complex on {1, 2}. One can check that this is maximal in cham(C3),
creating a chamber obstruction.

4 The Main Results

Ourmain results consist of showing that (1) the polar complex of a stable hyperplane
code is shellable and (2) shellability of %(C) implies C has none of the obstructions
thus far considered, except possibly the strong bitflip obstruction. First, we define
shellability.

Definition 10 Let " be a pure simplicial complex of dimension d and F1, . . . , Ft

an ordering of its facets. The ordering is a shelling order if, for i > 1, the complex

"({Fi}) ∩"({F1, . . . , Fi−1})

is pure of dimension d − 1. A simplicial complex is shellable if its facets permit a
shelling order.

A shelling order constructs a simplicial complex one facet at a time in such a
way that each new facet is glued along maximal faces of its boundary. The facets of
%(C) correspond to codewords of C, thus a shelling order of %(C) corresponds to
an ordering of the codewords. We explicitly construct such an order in Sect. 7.1 to
prove Theorem 4.

Theorem 4 Let C ⊆ 2[n] be a stable hyperplane code. Then %(C) is shellable.
It turns out that the structure of shellable polar complexes does not allow for

many of the obstructions thus far considered.

Theorem 5 Let C ⊆ 2[n] be a combinatorial code such that %(C) is shellable.
Then,

1. C has no weak bitflip local obstructions,
2. C has no sphere link obstructions, and
3. C has no chamber obstructions.

Theorem 5 is proven in Sect. 7.2. Note the conclusion of Theorem 5.1 refers to
weak local obstructions, highlighting the gap between the notions of collapsibility
and contractibility.
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5 Discussion

Hyperplane codes are a special class of convex codes that naturally arise as the
output of a one-layer feedforward network [13]. Hyperplane codes are a proper1

subclass of the open convex codes. We set out to find obstructions to being a
hyperplane code, while focusing on stable hyperplane codes. There are two reasons
for primarily considering the stable hyperplane codes: (1) they are ‘generic’ in
that they are stable to small perturbations, and (2) they allow the action of the
group of bitflips (Z2)

n. The second property makes it natural to consider the polar
complex %(C) of a code, because the combinatorics of the polar complex captures
all the bitflip-invariant properties of the underlying stable hyperplane code. We have
established the following relationships among the properties of the polar complex
of the code. The necessary conditions for C being a stable hyperplane code,

%(C) is shellable⇐3 C is a stable
hyperplane code

3⇒






C has no strong bitflip obstructions,

C has no sphere link obstructions,

C has no chamber obstructions.

We have also established that almost all currently known necessary conditions
follow from the shellability of the polar complex:

%(C) is shellable 3⇒






C has no weak bitflip obstructions,

C has no sphere link obstructions,

C has no chamber obstructions.

Note that the shellability of the polar complex implies the lack of weak bitflip
obstructions, while a stable hyperplane code lacks strong bitflip obstructions. It is
currently an open problem if the gap between the strong and the weak versions of the
local obstructions is indeed a property of shellable polar complexes. Alternatively,
codes with shellable polar complexes may also lack the strong bitflip obstructions.
An example of a code whose polar complex is shellable, but has the strong bitflip
obstruction2 would provide a negative answer to the following open question: Is
shellability of the polar complex equivalent to the code being a stable hyperplane
code?

What makes a code a stable hyperplane code is still an open question. It seems
likely that the shellability of the polar complex is not the only necessary condition
for a code to be a stable hyperplane code. From a computational perspective,
deciding if a given pure simplicial complex is shellable is known to be an NP-hard
problem [14]. This likely means that answering the question of whether a given code

1See e.g. Example 3 and Fig. 3.
2In particular, the appropriate link in Definition 6 is contractible, but not collapsible.
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is produced by a one-layer network may be not computationally feasible. Ruling
out that a given code is a hyperplane code may be less computationally intensive
however, as it can rely on computing the Betti numbers of the free resolution of the
Stanley-Reisner ideal of the polar complex, as illustrated in the following section.

6 Algebraic Signatures of a Hyperplane Code

Given a code C, how can we rule out that C is a stable hyperplane code? In this
section, we show how the tools from computational commutative algebra can be
used to detect sphere link obstructions via Stanley-Reisner theory.

6.1 The Neural and the Stanley-Reisner Ideal

The connections between neural codes and Stanley-Reisner theory were first
developed in [9], and later expanded upon in [10, 12], and [16]. The key observation
is that a code C ⊆ 2[n] can be considered as a set of points in (F2)

n, and
the vanishing ideal IC of that variety is a “pseudo-monomial ideal” with many
similarities to a monomial ideal. In this section, we show that this connection can
be made more explicit via the polar complex.

First, we state necessary prerequisites about the neural ring. Let F2 denote the
field with two elements, and consider the polynomial ring R

def= F2[x1, . . . , xn]. A
polynomial f ∈ R can be considered as a function f : 2[n] → F2 by defining f (σ )
as the evaluation of f with xi = 1 for i ∈ σ and xi = 0 for i #∈ σ . Polynomials of
the form

xσ (1− x)τ
def=

∏

i∈σ
xi

∏

j∈τ
(1− xj ),

where σ, τ ⊆ [n], are said to be pseudo-monomials. Note that the pseudo-monomial
xσ (1−x)[n]\σ evaluates to 1 if and only if the support of x equals σ ; such a pseudo-
monomial is called the indicator function of σ .

Definition 11 ([9]) The vanishing ideal of a code C ⊆ 2[n] is the ideal of
polynomials that vanish on all codewords of C,

IC
def= {f ∈ R | f (σ ) = 0 for all σ ∈ C}.

The neural ideal of C is the ideal generated by indicator functions of non-
codewords,

JC
def=

〈
xσ (1− x)[n]\σ | σ /∈ C

〉
.
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The boolean ideal of C is the ideal generated by the boolean relations, pseudo-
monomials with σ = τ = i,

B def= 〈xi(1− xi) | i ∈ [n]〉 .

Lemma 4 ([9, Lemma 3.2]) Let C be a neural code. Then IC = JC + B.
Pseudomonomials in the vanishing ideal IC correspond to relations of the form⋂

i∈σ Ui ⊆
⋃

j∈τ Uj among sets in any cover realizing C.
Lemma 5 ([9, Lemma 4.2]) Let C = code(U,X) be a combinatorial code. Then

xσ (1− x)τ ∈ IC ⇐⇒
⋂

i∈σ
Ui ⊆

⋃

j∈τ
Uj ,

where by convention
⋂

i∈∅ Ui = X and
⋃

j∈∅ Uj = ∅.

In particular, the generators of B correspond to the tautological relations Ui ⊆
Ui . The neural ideal records the non-tautological relations.

Definition 12 ([9]) A pseudo-monomial f ∈ JC is said to be minimal if there is no
other pseudo-monomial g ∈ JC that divides f . The canonical form of JC, denoted
CF(JC), is the set of all the minimal pseudo-monomials in JC.

The elements of the canonical form correspond to the minimal nontrivial
relations

⋂
i∈σ Ui ⊆

⋃
j∈τ Uj . We will see that the canonical form of JC and the

Boolean relations also corresponds with the generating set of the Stanley-Reisner
ideal of %(C). We make these relationships explicit in Lemma 6 and Corollary 2.

The Stanley-Reisner correspondence associates to any simplicial complex on n

vertices an ideal generated by square-free monomials in a polynomial ring in n

variables [26]. The construction of the polar complex is seen to be particularly
natural when considering its associated Stanley-Reisner ideal. For the unbarred
vertices, we set the corresponding variables via i 0→ xi ; for the barred vertices,
we associate ī 0→ yi . The Stanley-Reisner ideal of %(C) is the ideal in S

def=
F2[x1, . . . , xn, y1, . . . , yn] generated by the squarefree monomials indexed by non-
faces of %(C).
Definition 13 Let C ⊆ 2[n] be a combinatorial code. The Stanley-Reisner ideal of
the polar complex is given by

I%(C) = 〈xσyτ | σ % τ #∈ %(C)〉 ⊆ S.

Example 7 Consider the code C1 = {1, 12, 123, 2, 23} from Example 1. The
corresponding variety in F3

2 is {100, 110, 111, 010, 011}with canonical form given
by

CF(JC1) = {(1− x1)(1− x2), x3(1− x2)}.
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The polar complex of C1 is given by

%(C1) = "({12̄3̄, 123̄, 123, 1̄23̄, 1̄23}).

The minimal nonfaces of %(C1) are {11̄, 22̄, 33̄, 1̄2̄, 2̄3}. This gives the Stanley-
Reisner ideal

I%(C1) = 〈x1y1, x2y2, x3y3, y1y2, x3y2〉.

The first three monomials in this list correspond to the Boolean relations, while the
last two can be compared to the canonical form.

The intuition intimated by Example 7 holds true in general.

Lemma 6 For any nonempty combinatorial code C ⊆ 2[n], the Stanley-Reisner
ideal of the polar complex is induced by the canonical form and the Boolean
relations. That is,

xσyτ ∈ I%(C) ⇐⇒ xσ (1− x)τ ∈ IC. (3)

and so

I%(C) = 〈 xσyτ | xσ (1− x)τ ∈ CF(JC) 〉+ 〈 xiyi | i ∈ [n] 〉. (4)

Proof Consider a square-free monomial xσyτ ∈ S. By definition, xσyτ ∈ I%(C) if
and only if σ %τ is a nonface of %(C). The set σ %τ is a nonface of %(C) if and only
if any codeword in C which contains σ is not disjoint from τ , that is, C satisfies the
following property:

for all α ∈ C, σ ⊆ α 3⇒ α ∩ τ #= ∅. (5)

If C satisfies (5), the pseudomonomial xσ (1 − x)τ vanishes on all of C, as xσ

evaluates to 0 on any codeword not containing σ , and (1 − x)τ evaluates to 0 on
any codeword not disjoint from τ , e.g. any codeword containing σ . Conversely, if
xσ (1−x)τ vanishes on all of C, every codeword that contains σ must not be disjoint
from τ , so C satisfies (5). Therefore, xσ (1−x)τ ∈ IC. Thus we have established (3)
and (4) follows, as any pseudomonomial in IC is divisible either by xi(1 − xi) for
some i, or by an element of the canonical form CF(JC). *%

The following is an immediate corollary of Lemmas 5 and 6.

Corollary 2 Let C = code(U,X) ⊆ 2[n] and I%(C) the Stanley-Reisner ideal of the
polar complex of C. Then

xσyτ ∈ I%(C) ⇐⇒
⋂

i∈σ
Ui ⊆

⋃

j∈τ
Uj .
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6.2 Sphere Link Obstructions and Multigraded Free
Resolutions

In Sect. 3.2, we showed that link&(%(C)) is either empty, collapsible, or is isomor-
phic to a sphere of dimension n− |&|− 1 when C is a stable hyperplane code. One
consequence of this fact is that if a stable hyperplane realization of C exists, then a
lower bound on the dimension of the realizing space is

d ≥ max
&∈%(C)

{
(n− |&|) | link&(%(C)) ∼ Sn−|&|−1

}
.

However, this may not be the true lower bound.

Example 8 Consider the code C = {∅, 1, 2, 3} consisting of four words; this can
be realized by hyperplanes in R2 as in Fig. 4. Still, the polar complex %(C) has
facets 123, 123, 1̄23̄, 123, which has spherical links only at & = {ī, j̄ } for i #=
j ∈ {1, 2, 3}. This might lead us to infer that the minimal realizing dimension is
n− |&| = 3 − 2 = 1; however, it is easy to prove that it is impossible to realize by
hyperplanes in R1.

Another consequence of the sphere link property (Theorem 2) relates to algebraic
properties of the Stanley-Reisner ring. The dual version of Hochster’s formula
relates the multigraded minimal free resolution of the Stanley-Reisner ideal to the
simplicial homology of the corresponding complex. A full exposition of minimal
free resolutions is beyond the scope of this article, so we give a brief description
and direct the reader to [23, Chapter 1] for more information.

The multidegree of a monomial
(∏n

i=1 x
ai
i

∏n
j=1 y

bj
j

)
∈ S is the vector of

exponents (a, b) = (a1, . . . , an, b1, . . . , bn) ∈ N2n. When the exponents are all 0
or 1, we identify the multidegree with its support as a subset of [n]% [n]. The coarse
degree of a monomial is the sum of the exponents

∑n
i=1 ai +

∑n
j=1 bj ∈ N. For a

homogeneous ideal I ⊂ S, a minimal free resolution of S/I is an exact sequence
of free modules that terminates in S/I → 0. Each module in the minimal free
resolution of S/I can be multigraded so that each map in the resolution preserves
multidegree. The multigraded Betti number of S/I , βi,σ = βi,σ (S/I), is the rank
of the free module in position i in the free resolution and with multidegree σ .

Fig. 4 (a) Realization of
C4 = {∅, 1, 2, 3} in R2.
Though sphere link
dimension is 1, minimal
realization dimension is 2.
(b) The polar complex %(C4).
The only non-collapsible
links are of the form
linkij%(C)

(a)

U1

U2

U3

(b)
12

3

1 2

3
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Importantly for our purposes, these Betti numbers can be explicitly computed with
Macaulay2 [15] and similar computational algebra software.

Lemma 7 (Hochster’s Formula, Dual Version [23, Corollary 1.40]) For %(C)
the polar complex of a code C ⊆ 2[n] and & a face of %(C),

βi+1,&c (S/I%(C)∨) = dimk H̃i−1(link&%(C); k).

Here&c = ([n]%[n])\& denotes the complement of& in the vertex set of%(C), and
%(C)∨ denotes the Alexander dual simplicial complex, %(C)∨ def= {Fc | F #∈ %(C)}.

We use this lemma to detect sphere link obstructions.

Proposition 5 Let C be a stable hyperplane code with polar complex %(C). Then,
βi,σ (S/I%(C)∨) = 0 for all i ≥ 1 except:

{
β1,&c (S/I%(C)∨) = 1 if & is a facet.

βn−|&|+1,&c (S/I%(C)∨) = 1 if link&%(C) ∼ Sn−|&|−1.

Proof Inserting i = 0 and & a facet into the dual version of Hochster’s formula
yields

β1,&c (S/I%(C)∨) = dimk H̃−1(link&%(C); k).

The right-hand side is equal to 1, since the link of a facet is the irrelevant simplicial
complex, which gives a generator of (−1)-homology. This gives the first equation
from the Proposition.

Setting i = n− |&| and & a face of %(C):

βn−|&|+1,&(S/I%(C)∨) = dimk H̃n−|&|−1(link&c%(C); k).

The right-hand side is 1 precisely when the link is a sphere of the right dimension.
In all other cases, the link is collapsible (Proposition 3) or equal to the void complex
(links of non-faces), so the reduced homology is zero. *%

This proposition provides an algebraic signature of stable hyperplane codes.

Example 9 We again consider the code from Example 3. First, we translate into
its polar complex %(C3), which has eleven facets for its eleven codewords. Then
we compute the Stanley-Reisner ideal of its Alexander dual, and the Betti numbers
associated to a minimal free resolution (e.g. using Macaulay2).

The table below is a condensed representation of the Betti numbers of I%(C3),
where the (i, j)-th entry is βj,i+j under the coarse grading.
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i

j
0 1 2 3 4

0 1
1
2
3 11 16 6
4 1 2
5 1

The value of β1,4 counts the codewords, which are facets of %(C). The remaining
entries of row 3 indicate links with the appropriate dimension. Rows 4 and 5, under
the multigrading, point to the following nonzero Betti numbers:

β2,234134 = 1, β3,2341234 = 1, β3,1234134 = 1, β4,12341234 = 1.

Note that the multigrading of each Betti number corresponds to the link of
its complement; specifically, 234134 0→ 12̄, 2341234 0→ 1, 1234134 0→ 2̄, and
12341234 0→ ∅. These entries give us the following sphere link obstructions to
%(C3) being the polar complex of a stable hyperplane code.

1. link12̄%(C3) = "({34̄, 3̄4}), which has two connected components and hence
nontrivial reduced homology of rank 1.

2. link1%(C3) = "({234, 2̄34̄, 234, 234̄, 23̄4}) ∼ S1, which has the wrong
dimension.

3. link2̄%(C3) = "({134, 1̄34̄, 134, 134̄, 13̄4}) ∼ S1, which also has the wrong
dimension.

4. link∅%(C3) = %(C3) has nontrivial homology, but C3 #= 2[4].

Each of these indicates the presence of a sphere link obstruction. Thus, C cannot be
a stable hyperplane code.

7 Proofs of Theorems 4 and 5

Here we present the proofs of Theorems 4 and 5.

7.1 Shellability

The proof of Theorem 4 is organized as follows. First, we prove it in the special
case X = Rd . To extend the proof to the general case, we prove stable hyperplane
codes can be realized by a pair (H,P) with P the interior of a convex polyhedron
with bounding hyperplanesB such that (H∪B,Rd ) is a stable arrangement. Lastly,
we use links to consider P as a region in Rd , reducing to the special case.
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To prove the special case of Theorem 4, we use the following equivalent
definition of a shelling order (see, for example, [26, Chapter III]).

Definition 14 Let " be a simplicial complex and F1, . . . , Ft an ordering of its
facets. The ordering is a shelling order if the sequence of complexes "i =
"({F1, . . . , Fi}), for each i = 2, . . . , t , satisfies the property that the collection
of faces "i \ "i−1 has a unique minimal element, denoted r(Fi) and called the
associated minimal face of Fi .

Lemma 8 If (H,Rd ) has generic intersections, then %(code(H,Rd )) is shellable.

Proof Let C = code(H,Rd ) with k = |C| the number of codewords. Without
loss of generality, the wi defining the hyperplanesHi are unit vectors that span Rd .
Recall the notation

RF =
⋂

i∈F
H+

i ∩
⋂

j̄∈F
H−

j

for F ∈ %(C). Our proof proceeds by induction on d , the ambient dimension. An
example of the d = 2 case is illustrated in Fig. 5.

The base case d = 1 is straightforward and guides the intuition for the general
case. We order the codewords of C in a natural way based on their atoms, and show
the corresponding ordering of facets of %(C) is a shelling order. Each half-space
H+

i is defined by an inequality of the form x > hi or −x > hi (i.e. wi = ±1
for all i). Each atom Aσ has nonempty interior (aσ , bσ ) with aσ = hiσ for some
iσ ∈ [n], with one exception, where aσ = −∞. Order the codewords σ1, . . . , σk
in increasing order of aσ . This is a shelling order: when we add facet &(σ ) to our
simplicial complex, this is the first time a facet contains iσ if wi = 1, otherwise
it’s the first time a facet contains iσ . In other words, σ is the first codeword in this
order which contains i if wi = 1 or the first codeword which does not contain i if
wi = −1; all later atoms lie on the same side of the hyperplane Hi . Thus, every
facet of %(C) has an associated minimal face and this ordering is a shelling order.

Now consider d > 1. Denote by *(H) the set of points where d hyperplanes
intersect. We choose a generic “sweep” direction, a vector u ∈ Rd which satisfies
the following properties:

(i) u is not in the span of any (d − 1)-element subset of {w1, . . . , wn}.
(ii) For every pair of distinct points x, y in *(H), u is not in the orthogonal

complement (x − y)⊥.

Such a u exists because we exclude finitely many subsets of measure zero from Rd .
We use u to define a sliding hyperplaneH(t) and its corresponding “discovery time”
functionm : C→ R ∪ {−∞},

H(t) = {x ∈ Rd | u · x − t = 0}
m(σ ) = inf{u · x | x ∈ Aσ }.
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In the d = 1 case, m(σ ) = aσ and thus induces a total order on codewords. For
the d > 1 case, the goal is once again to use m to order the codewords. To do this,
(1) we order the codewords with m(σ ) = −∞ inductively, then (2) we show m is
injective on the remaining codewords, and lastly, (3) we show every facet has an
associated minimal face.

(1) By construction, H ∪ {H+(t)} is a stable arrangement in Rd for all but
finitely many values of t , specifically, the values where H(t) contains a point
in *(H). Let t0 be a constant less than all of these values (see Fig. 5a
for an illustration). Property (i) ensures H+

i ∩ H(t0) #= ∅ for all i, so in
particular L def= {H+

i ∩ H(t0)} is a stable arrangement in H(t0) ∼= Rd−1.
By inductive hypothesis, %(code(L,H(t0))) is shellable. Each nonempty atom
of the arrangement (L,H(t0)) is the intersection of an atom of (H,Rd ) with

(a)

H+(t0)H+
1

H+
2

H+
3

(d)
12

3

3

(b)

H+
1

H+
2

H+
3

H+(t5)

(e)
12

3

3

(c)

H+
1

H+
2

H+
3

H+(t6)

σ6

e3 · σ6

e1 · σ6

(f)
12

3

1 2

1 2

1 2

3

Fig. 5 An example of the shelling order construction in the d = 2 case. (a) The atoms discovered
at time t0, i.e. the atoms Aσ with m(σ ) = −∞. Note the four atoms of (H,R2) which intersect
H(t0) partition it into four intervals. (b) As t increases, H(t) slides to the right, encountering atoms
one at a time. The shaded atom is newly discovered. (c) Uniqueness of r(&(σ6)) follows because
e3 · σ6 and e1 · σ6 have already been discovered. (d–f) The inductive step and next two steps of
the shelling order. The associated minimal face is highlighted with a large mark (panel (d)) or a
dashed line (panels (e, f)). (d) The polar complex %(code(L,H(t0))). Ordering the four codewords
discovered in panel (a) from top to bottom yields r(123) = 3. (e) Facet 123 is added when H(t)
contains the intersection H1 ∩H2 (panel (b)), thus r(123) = 12. (f) Atom A12 is discovered when
H(t) contains H1 ∩H3 (panel (c)). Thus r(123) = 13
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H(t0), and the corresponding codewords are precisely those withm(σ ) = −∞.
Thus, we have an ordering for these codewords which is an initial segment of a
shelling of %(C) (Fig. 5d).

(2) Let σ ∈ C be a codeword with m(σ ) > −∞. The function f (x) = u · x
is minimized along a face of the (closure of) polyhedron R&(σ ); property (i)
ensures this face is a vertex, which is an element of*(H). Property (ii) ensures
f |*(H) is injective. Therefore, m induces a total order on codewords σ with
m(σ ) > −∞. Let σ1, . . . , σk be the ordering of codewords of C obtained
appending this ordering to the order from (1). We will show each facet has
an associated minimal face to complete the proof.

(3) Denote %i
def= %({σ1, . . . , σi}) for i = 1, . . . , k. From (1), r(&(σi )) is defined

whenever m(σi ) = −∞. So, let σi be a codeword with ti = m(σi ) > −∞,
meaning there is a vertex of R&(σi ) minimizing f . This vertex is an element
of *(H), i.e. it is the intersection Hαi of d hyperplanes (see Fig. 5b, c). For
F ∈ %(C) and α ⊆ [n], we denote

F |α def= F ∩ (α % α),

the subset of F with support α. We claim r(&(σi )) = &(σi )|αi (see Fig. 5e, f).
The region R&(σi )|αi is a cone supported by H(ti), so this is the first codeword
in our order with this exact combination of “on” and “off” vertices indexed by
αi . Thus, &(σi )|αi ∈ %i \ %i−1.

Now consider F = &(σi )|β ∈ %i \ %i−1. Suppose, for the sake of
contradiction, β #⊇ αi , that is, there is some + ∈ αi \ β. Then F ⊆ &(e+ · σi ).
Note e+ ·σi ∈ C since, by genericity, all 2d possible regions around the pointHαi

produce codewords. However, since H(ti) intersects the interior of R&(e+·σi ),
we have m(e+ · σi ) < m(σi ) and therefore &(e+ · σi ) ∈ %i−1. We reach a
contradiction, as this implies F ∈ %i−1. Therefore, r(&i ) = &i |αi is the unique
minimal face in %i \ %i−1. This completes the proof. *%

We now prove that a stable hyperplane code is a subset of codewords of a stable
hyperplane arrangement in Rd .

Lemma 9 If C is a stable hyperplane code, then C can be realized by a stable pair
(H,P) such that P = ⋂

j∈[m] B
+
j is an open polytope with bounding hyperplanes

B such thatH ∪ B has generic intersections in Rd .

Proof Let (H,X) be a stable pair realizing C. By Lemma 1, we can perturb the
hyperplanesH to an arrangementH ′ while preserving the atoms of the arrangement
(H,X), i.e. code(H ′,X) = code(H,X). Thus, C has a realization (H ′,X) such
thatH ′ has generic intersections outside of X as well.

Applying Lemma 1 again, we can choose a point pσ in the interior of AH ′
σ for

every σ ∈ C. Let P be the interior of the convex hull of the set of points {pσ |
σ ∈ C}; by perturbing the points slightly we may assume P is full-dimensional.
Let B = {B+

n+1, . . . , B
+
n+m} denote the bounding hyperplanes of this polytope, i.e.
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P = ⋂n+m
j=n+1 B

+
j . Since P ⊆ X, we conclude code(H ′,P) ⊆ code(H ′,X). Since

we chose a points pσ for every codeword of C, σ ∈ C implies AH ′
σ ∩ P #= ∅

and therefore code(H ′,X) ⊆ code(H ′,P). Thus we have C = code(H ′,P) and
(H ′,P) is a stable arrangement.

The hyperplanes inH ′ ∪B do not necessarily have generic intersections. Again,
we apply Lemma 1: one can perturb each hyperplane in B to hyperplanes B′,
so that these hyperplanes have generic intersections, yet the appropriate code is
preserved, i.e. C = code(H ′,P) = (H ′,P ′), where P ′ is the open polyhedron
P ′ = ⋂

B∈B ′ B
+. This completes the proof. *%

We extend Lemma 8 to the general case with the following standard lemma [5].

Lemma 10 ([5, Proposition 10.14]) Let" be a shellable simplicial complex. Then
linkσ" is shellable for any σ ∈ ", with shelling order induced from the shelling
order of".

Proof of Theorem 4 By Lemma 9, C can be realized as C = code(H,P) with

P =
n+m⋂

j=n+1

B+
j

an open polyhedron such that the arrangement H ∪ B has generic intersections in
Rd . Set C′ = code(H ∪ B,Rd), a code on vertex set [n +m]. By Lemma 8, %(C′)
is shellable. Set F = {n+ 1, . . . , n+m} ∈ %(C′). Then we have

linkF%(C′) = %



code
(
H,

n+m⋂

j=n+1

B+
j

)


 = %(C).

By Lemma 10, as the link of a shellable complex, %(C) is shellable. *%

7.2 Obstructions Following from Shellability

In general, shellable simplicial complexes are homotopy-equivalent to a wedge sum
of spheres, where the number and dimension of the spheres correspond to the facets
with r(F ) = F in some shelling order [22]. First we prove a stronger version of this
statement for the polar complex of a code, which will be used throughout the proofs
of all parts of Theorem 5. Note the condition of this lemma is intrinsic to the polar
complex of the code and does not rely on any particular realization.

Lemma 11 If %(C) is shellable, then either C = 2[n] or %(C) is collapsible.
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Proof We induct on the number of codewords of C. Let F1, . . . , Ft be a shelling
order of %(C), with σ1, . . . , σt the corresponding order of codewords in C. For
ease of notation, let C′ = {σ1, . . . , σt−1} denote the first t − 1 codewords in
this shelling order. By construction, %(C′) is shellable. Because it has one fewer
codeword than C, it cannot be the full code and therefore, by inductive hypothesis,
%(C′) is collapsible.

By definition, r(Ft ) is the unique minimal element of the collection%(C)\%(C′)
and hence the only facet that contains r(Ft ) is Ft . If r(Ft ) " Ft , then (r(Ft ), Ft ) is
a free pair, and %(C)↘ r(Ft) %(C′) which is collapsible.

In the case r(Ft ) = Ft , we claim we must have C = 2[n]. Suppose not, for the
sake of contradiction, and let τ ∈ 2[n] \ C. Note %(2[n] \ {τ }) is homeomorphic to a
closed (n−1)-ball (as it is a sphere missing top-dimensional open disc). Since %(C′)
is a collapsible subcomplex of a simplicial complex, %(C) is homotopy-equivalent
to the quotient space %(C)/%(C′) (see [18, Proposition 0.17 and Proposition A.5]).
Because r(Ft ) = Ft , the boundary of the simplex"({Ft }) is contained in %(C′), and
therefore %(C)/%(C′) is homotopy equivalent to Sn−1. We reach a contradiction, as
%(C) ⊆ %(2[n] \ {τ }), but there is no embedding Sn−1 ↪→ Rn−1 (see, e.g. [18,
Corollary 2B.4]). Therefore, in this case we have C = 2[n]. *%

To prove Theorem 5.1, we need one more lemma. Note that this lemma concerns
with contractibility of certain subcomplexes, hence it can only be used to show C
has no weak local obstructions.

Lemma 12 ([8, Lemma 4.4]) Let " be a simplicial complex on vertex set V . Let
α,β ∈ " with α ∩ β = ∅, α ∪ β " V , and linkα("|α∪β) not contractible. Then
there exists α′ ∈ " such that (i) α′ ⊇ α, (ii) α′ ∩ β = ∅, and (iii) linkα′(") is not
contractible.

Proof of Theorem 5.1 Assume that the polar complex %(C) is shellable. To show
that C has no weak local obstructions, first suppose τ ∈ "(C) and linkτ"(C) is
not contractible. We will show τ ∈ C. Note that "(C) = %(C)|[n]%∅, thus we
apply Lemma 12 to the pair α = τ % ∅, β = ([n] \ τ ) % ∅ in the polar complex
%(C): there exists a face T ∈ %(C) such that (i) T = T + % T − ⊇ τ % ∅, (ii)
T ∩ (([n] \ τ ) % ∅) = ∅, and (iii) linkT%(C) is not contractible. Statements (i)
and (ii) together imply T + = τ . Statement (iii) together with Lemma 11, implies
linkT%(C) = %(2[n]\T ). Therefore this link contains the facet F consisting of all
barred vertices in [n] \ T . Thus T ∪F = τ % [n] \ τ is a face of %(C) and therefore
τ ∈ C; hence τ cannot be a local obstruction.

For any g ∈ (Z2)
n, the above argument extends to g ·C verbatim, since %(g ·C) =

g · %(C), and g · %(C) is also shellable. Thus, C has no bitflip local obstructions. *%
Proof of Theorem 5.2 Links of %(C) are polar complexes of a code on a smaller set
of vertices, and links of shellable complexes are shellable (Lemma 10). Therefore,
we can apply Lemma 11 to conclude linkF%(C) is either collapsible or %(2[n]\F )
for any F ∈ %(C). Thus, no face F can be a sphere link obstruction. *%
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We use one final lemma to prove Theorem 5.3, which concerns faces of simplicial
complexes with collapsible links.

Lemma 13 Let " be a simplicial complex with α ∈ " such that linkα" is
collapsible. Then "↘ delα".

Proof Let (σ1, τ1), . . . , (σk, τk) be the sequence of free pairs along which "1 =
linkα" is collapsed (in particular, σk = ∅), resulting in the sequence of simplicial
complexes

linkα" = "1 ↘σ1 "2 ↘σ2 · · ·↘σk "k+1 = {}.

Consider the sequence (σ1 ∪ α, τ1 ∪ α), . . . , (σk ∪ α, τk ∪ α) in ". We claim, (σ1 ∪
α, τ1 ∪ α) is a free pair: σ1 ∪ α " τ1 ∪ α and τ1 ∪ α is a facet of ". If σ1 ∪ α ⊆ τ ′

for some facet τ ′, then τ ′ \ α is a facet of linkα" which contains σ1, hence τ ′ = τ .
This argument can be repeated for the pair (σ2 ∪ α, τ2 ∪ α) in delσ1∪α", and so
on, to show that this is a sequence of free pairs in ". Thus, we have a sequence of
collapses

"↘σ1∪α · · ·↘σk∪α delσk∪α".

Since σk ∪ α = α, we have "↘ delα". *%
Proof of Theorem 5.3 Assume the polar complex %(C) is shellable. We demon-
strate that if σ ∈ cham(C) has more than one chamber, then σ is not maximal.

Suppose T1 #= T2 are chambers of σ , that is

linkT1%(C) = linkT2%(C) = %(2σ ).

We will proceed by induction on k = |T1 \ T2| > 0. Since T1 = T2 = [n] \ σ , k is
the number of indices where one Ti has a barred vertex and the other does not.

For the base case k = 1, suppose T1 \ T2 = i. Then

linkT1∩T2%(C) = %(2σ∪{i})

so σ ∪ i ∈ cham(C) and σ is not maximal.
Now suppose |T1 \ T2| = k > 1. We produce a face F such that linkF%(C) =

%(2σ ) and |T1 \ F | < k, giving the induction step. Let T = T1 ∩ T2, and consider
linkT%(C). This is a shellable subcomplex of %(2[n]\T ); denote its corresponding
code by C′. Let T ′1 = T1 \ T and T ′2 = T2 \ T ; by design these are disjoint with
|T ′1 \T ′2| = |T ′1| = |T ′2| = k and linkT ′i %(C

′) = %(2σ ) for i = 1, 2. Because they are
disjoint, starT ′1 %(C

′) ∪ starT ′2 %(C
′) is a suspension of %(2σ ), making it homotopy

equivalent to S|σ |.
Consider a face F ′ ∈ %(C′) such that F ′ = T ′1. By construction, linkF ′%(C′)

is a subcomplex of %(2σ ). If linkF ′%(C′) #= %(2σ ), then the link is collapsible by
Lemmas 10 and 11; Lemma 13 implies that %(C′) collapses to delF ′%(C′).
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There are 2k − 2 faces F ′ #= T1, T2 with F ′ = T1. If none of these F ′ had
linkF ′%(C′) = %(2σ ), this would lead to a contradiction: we would have a sequence
of collapses

%(C′)↘ starT ′1 %(C
′) ∪ starT ′2 %(C

′).

Since %(C) is shellable, by Lemma 11 it is homotopy equivalent to Sn−1 or is
contractible. Collapsing preserves homotopy type, so we reach a contradiction.

Therefore, for one of these F ′ we must have linkF ′%(C′) = %(2σ ). Thus
linkF ′∪T %(C) = %(2σ ) and so we have another face in %(C) whose link yields
%(2σ ), namely F = F ′ ∪ T . Since |T1 \ F | < k, by induction σ is not maximal in
cham(C). Therefore, if σ is maximal in C, it must have a unique chamber, and thus
C has no chamber obstructions. *%
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