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It is often hypothesized that a crucial role for recurrent connections in
the brain is to constrain the set of possible response patterns, thereby
shaping the neural code. This implies the existence of neural codes that
cannot arise solely from feedforward processing. We set out to find such
codes in the context of one-layer feedforward networks and identified a
large class of combinatorial codes that indeed cannot be shaped by the
feedforward architecture alone. However, these codes are difficult to dis-
tinguish from codes that share the same sets of maximal activity patterns
in the presence of subtractive noise. When we coarsened the notion of
combinatorial neural code to keep track of only maximal patterns, we
found the surprising result that all such codes can in fact be realized by
one-layer feedforward networks. This suggests that recurrent or many-
layer feedforward architectures are not necessary for shaping the (coarse)
combinatorial features of neural codes. In particular, it is not possible
to infer a computational role for recurrent connections from the combi-
natorics of neural response patterns alone. Our proofs use mathematical
tools from classical combinatorial topology, such as the nerve lemma and
the existence of an inverse nerve. An unexpected corollary of our main
result is that any prescribed (finite) homotopy type can be realized by a
subset of the form R%,\P, where P is a polyhedron.

1 Introduction

It is often hypothesized that one of the central roles of recurrent connec-
tions in the brain is to constrain the set of possible neural response patterns,
thereby shaping the neural code (Douglas & Martin, 2007; Luczak, Bartho,
& Harris, 2009). This hypothesis is appealing because it provides a concrete
computational function for the prevalence of recurrent connectivity in cor-
tical areas. It also implies the existence of neural codes that cannot arise
from the structure of feedforward connections alone.

We test this hypothesis by analyzing the neural codes of feedforward net-
works. Although it is well known that a feedforward network with hidden
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layers can approximate any continuous function (Cybenko, 1989; Hornik,
1991), this is not the case for one-layer networks. It is thus reasonable to
expect that there exist neural codes that cannot arise in one-layer feedfor-
ward networks and are necessarily shaped by a more complex network
structure.

For simplicity, we consider combinatorial neural codes (Schneidman,
Berry, Segev, & Bialek, 2006; Osborne, Palmer, Lisberger, & Bialek, 2008;
Schneidman et al., 2011), which consist of binary neural activity patterns,
and disregard details such as exact firing rates or relative spike timing
between different neurons. Our first result identifies a large class of com-
binatorial codes that are not realized by one-layer feedforward networks.
However, we also find that in the presence of noise, these codes are difficult
to distinguish from other codes that share the same sets of maximal activity
patterns. In order to increase robustness to noise, we coarsen the notion of
combinatorial code to keep track of only maximal patterns and again seek
to find codes that cannot arise in one-layer feedforward networks. To our
surprise, there are none.

Our main result is a no-go theorem stating that all coarse combinatorial
codes can in fact be realized by one-layer feedforward networks. Our proof
of this theorem is constructive and uses mathematical tools from classical
combinatorial topology, such as the nerve lemma and the existence of an
inverse nerve. An unexpected corollary is that any prescribed (finite) ho-
motopy type can be realized by a subset of the form R’ \ P, where P is a
polyhedron.

This no-go theorem implies that recurrent or many-layer feedforward
architectures are not necessary for shaping combinatorial features of neural
codes. In particular, it is not possible to infer a computational role for recur-
rent connections solely from the combinatorics of neural response patterns.
However, we also show that one-layer feedforward networks that respect
Dale’s law (Dayan & Abbott, 2001) produce fairly trivial neural codes,
possessing just one maximal activity pattern. Thus, one-layer feedforward
networks can produce interesting codes only if the projections from each
input neuron are allowed to have both positive and negative weights. This
suggests that recurrent architecture or hidden layers may be necessary to
compensate for the restrictions imposed by Dale’s law.

2 Background

A combinatorial neural code of a given population of n neurons is the
collection of all possible combinations of neurons that can be simultaneously
active. More precisely, a code word is a subset

o c ¥, ..., n
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Figure 1: One-layer feedforward network.

of neurons that are simultaneously active (i.e., fire within some small tem-
poral window) at some point of time, while a combinatorial code is the
collection of all such subsets
¢ c 2 d=Ef{subsets of [n]}.

Note that this notion of neural code describes only the set of possible re-
sponse patterns of a network (Schneidman et al., 2006, 2011; Osborne et al.,
2008). It does not include the “dictionary” of relationships between response
patterns and network inputs.

We investigate what combinatorial codes can arise as response patterns
in a one-layer feedforward network—that is, a collection of uncoupled neu-
rons (perceptrons) (Rosenblatt, 1958), driven by an input layer of neurons
(see Figure 1). The firing rates, x;(t) > 0 of such neurons can be approxi-
mated by the equations

m
X = (Zuiayu_0i>’ i=1,...,n, (2.1)
a=1

where 6; > 0 are the neuronal thresholds, U, are the effective strengths of
the feedforward connections, y,(t) > 0 are the firing rates of the neurons
in the input layer, and the transfer functions ¢, : R — R_, are monotone
increasing. -

For a nonnegative firing rate vector x € RZ ), we denote the subset of
coactive neurons as N

supp(x) = {i € [n] | x; > 0}.

Given a particular choice of the transfer functions ¢;, the combinatorial
neural code C(U, #) € 2] of the network described by equation 2.1 is the
collection of all possible subsets of neurons that can be coactivated by
nonnegative firing rate inputs y € R”,,

C(U,0) ={o =supp(x(y)) | y € RZy}.
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Our definition of C(U, 6) captures all possible response patterns of the
network, without any constraints on the network inputs. While it may be
more realistic to assume that the inputs y are themselves constrained to
a subset Y C R, our primary interest is in combinatorial codes that are
shaped by the structure of the feedforward network, as opposed to codes
whose structure is largely inherited from the previous layer. As an extreme
example, consider a relay network where the output layer is a copy of the
input later and each input neuron relays its activity to exactly one output
neuron (i.e., U is the identity matrix). Then any code could in principle be
realized by an appropriate choice of Y, even though the network itself plays
no role in shaping the code. Because we are interested in networks whose
computational function is to shape the structure of the code, we consider
the opposite extreme, where input firing rates are allowed to range over all
nonnnegative values and the code C(U, @) is completely determined by the
feedforward connections U and the thresholds 6.

It is well known that a collection of 1 perceptrons described by equation
2.1 canbe thought of as an arrangement of n hyperplanes in the nonnegative
orthant R”,), where m is the size of the input layer. Without loss of generality,
we can assume that the monotone increasing functions ¢;(t) satisfy the
conditions

¢,(t) =0, ift <0, ¢ (t)>0ift>0. 2.2)

This condition implies that given an input y € R,

>0
m
>0 < > Uy, —6>0.
a=1
The combinatorial code of the network, C(U, ), can thus be identified with

the list of the regions into which the above hyperplanes partition the positive
orthant R’;O, as in Figure 2. More precisely,1

CU,0) = {o S [n] |(Niey HY) NN HY # 0}, (2.3)
where

Hf ={y e RY) | Uy); > 6}, and
Hi ={y e R, | Uy); =6}

Here, by convention: N;_,H;}t = NjgoH; = RZ,.
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Figure 2: Code words in C(U, ) correspond to regions in the positive orthant
RZ,.

3 Results

We now describe our main results, with proofs deferred until the end.

First, observe that not every combinatorial neural code C C 2"l can be
encoded by a one-layer feedforward network. A code C is called convex
(Curto, Itskov, Veliz-Cuba, & Youngs, 2013) if there exists a collection of
convex subsets {V;}"; of X € R? such that?

C={o<nl| (N, V,.)mm].@(X\Vj) # 0} (3.1)

Note that choosing V; = H;" and X =R yields equation 2.3; thus, any
feedforward code C(U, 0) is convex. Therefore, nonconvex codes cannot be
encoded by a one-layer feedforward network.

Perhaps the simplest example of a nonconvex code is (Curto et al., 2013,

code B3)

€ =201\ {{1,2,3}, {23}, {1}} = ({2}, (3}, {1, 2}. {1. 3}}. (32)
We generalize this example by considering combinatorial codes that contain
subcodes that are obstructions to convexity. A subcode of a combinatorial

code C C 21"l is a collection of patterns obtained by restricting code words
in C to neurons inside a given subset o C [n]:

cCo ¥y =onp|pecyc2.

2Here, by convention: N._,V; = nj¢[n] (X\ V].) =X.

e’ i
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Any subcode of a convex code is convex. Thus, possessing a nonconvex
subcode is an obstruction to being realizable as a feedforward code C(U, 6).

The following theorem is a generalization of example 3.2 and is a corol-
lary of the more general theorem 5.

Theorem 1. Assume a combinatorial code C posesses a subcode C(o) C 2° that
satisfies the following conditions:

i. o ¢C(o),
ii. there exists a nonempty subsetv C o with |v| < |o| — 2suchthatv ¢ C(o),
iii. for every subset ¢’ C o with |o’| = |o| —1,if o’ D v then o’ € C(0).

The code C is nonconvex and cannot be realized by a one-layer feedforward network.

While the subcodes in theorem 1 provide a large repertoire of codes that
can be used to rule out a feedforward code, these codes are not robust to
noise. Specifically, a nonconvex code may differ from a convex code by
as little as one neuron’s participation in a single code word.? Since some
amount of noise or imprecision of neuronal firing is common in the brain,
the notion of combinatorial code is too fine to meaningfully discern whether
patterns of activity could be generated by a one-layer feedforward network.
However, a coarser notion that still preserves combinatorial features of the
neural code might potentially not suffer this deficiency.

We say that a code word o € C is a maximal pattern of the code C if it
is not contained in any larger pattern and denote the set of all maximal
patterns of C as

max(C)={c €C|o' 20 =0 ¢C}.

We refer to max(C) as a coarse combinatorial code. The coarse code is more
robust than the full combinatorial code C to subtractive noise that results in
missing one or more neurons’ participation in a code word.*

Moreover, this notion of code preserves core combinatorial features
of sparse codes. Experimentally observed neural activity is often sparse
(Hromédka et al.,, 2008; Barth & Poulet, 2012), that is, the number of
coactive neurons in a code word o is bounded as |o| < sn, with the frac-
tion of active neurons often as low as s < 0.1. Such combinatorial codes
tend to consist almost exclusively of maximal patterns and are thus well
approximated by their corresponding coarse codes.

3For example, adding either v = {1} or 0 = {1, 2, 3} to the code in equation 3.2 would
turn it into a convex code. Similarly, removing o’ = {1, 3} from that code would also turn
it into a convex code.

*4Biologically, the subtractive noise may be a result of either a neuron’s failure to spike
or a spike misalignment, where the neuron’s spike occurs too early or too late as compared
to the spikes of other neurons in the code word.
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This motivates us to investigate the possibility of ruling out a one-layer
feedforward network based on the coarse combinatorial code max(C). Our
central result is that this cannot be done. Surprisingly, one-layer feedfor-
ward networks may encode any prescribed set of maximal patterns.

Theorem 2 (No-Go Theorem). For every collection M C 2" of maximal pat-
terns, there exists a one-layer feedforward network of perceptrons (see equation 2.1)
with

max(C(U, 0)) = M.

In particular, it is not possible to infer a computational function for
recurrent connections, or hidden layers, in a network from observations of
the coarse combinatorial code alone. The proof of theorem 2 is constructive
and uses tools from combinatorial topology. An unexpected corollary is the
following topological fact:

Corollary 1. For any finite abstract simplicial complex A, there exists a set of the
form R™\ P, for P a polyhedron, which is homotopy equivalent to A

This is perhaps counterintuitive because if the polyhedron is fully con-
tained within R” ), the complement has the homotopy type of a sphere. The
richness in the topology emerges from the intersection of the polyhedron
with the boundary of the positive orthant.

An important caveat for interpreting our no-go theorem is that many
types of neurons in the brain conform to a strong constraint called Dale’s
law (Dayan & Abbott, 2001). Dale’s law states that neurons have either
purely excitatory or purely inhibitory synapses onto other neurons. More
formally, a one-layer feedforward network (equation 2.1) respects Dale’s
law if there is a partition of the columns of the synaptic matrix into two
families, U = [U, | U_], so that all entries of U, are nonnegative and those
of U_ are nonpositive. It turns out that one-layer networks that respect
Dale’s law are capable of producing only an extremely restricted class of
coarse combinatorial codes:

Proposition 1. Suppose that the one-layer feedforward network (equation 2.1)
respects Dale’s law. Then the combinatorial code of this network has exactly one

maximal pattern o, € C(U, 0), that is,

max(C(U, 0)) = {o

max}'

This property, in particular, excludes most known sparse neural codes,
such as place field codes or orientation tuning codes.

It is worth noting, however, that a one-layer feedforward network with-
out the Dale’s law constraint can be thought of as an approximation of

5A collection of sets A is a simplicial complex if it is closed under inclusion, that s, if
o€ Aand v C o, then v € A. See section 5 for details.
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a two-layer feedforward network that respects Dale’s law. For example,

assuming ¢,(y) = [y] fl:ef max(0, y), that the first layer synapses U' are exci-
tatory while the second layer synapes U? respect Dale’s law, and moreover
that the first layer has zero thresholds, one obtains the following equation
for the firing rates x of the output neurons:

x=[W[u'y], —6], =[UPU'y—06], =[Uy—#6],.

Observe that the resulting matrix U = U?U! no longer has to respect Dale’s
law, even though the component matrices U' and U? do so. Thus, two-layer
feedforward networks that obey Dale’s law are capable of encoding any pre-
scribed simplicial complex, that is, in the presence of a layer of inhibitory
neurons, a feedforward network can encode topologically interesting
stimuli.

4 Proofs of the Main Results

In order to understand the coarse neural codes max(C), it is convenient
to consider the maximal possible code with the same max(C). This can be
thought of as a completion of the code C obtained by adding all the subsets
of max(C); this results in a new code A(C) 2 C,

AC)={vCo|oel}={vCo|oemax(C)}. 4.1)

This collection of sets is closed under inclusion: v C o € C implies that
v € C. A collection of sets with this property is called an abstract simplicial
complex.

4.1 Convex Codes. Itis well known that every abstract simplicial com-
plex, that is, a code that satisfies C = A(C), is a convex code (Wegner, 1967;
Tancer, 2013). The following result shows that convex codes that are not
simplicial complexes also have strong restrictions.

Theorem 3. Assume that C C 21" is a convex code of the form 3.2 and that a code
word v € A(C) violates the simplicial complex property, that is, v ¢ C. Then the
localized complex,

A(C)‘deef{r Cnl\v]| (rUv)e A(C)} c ol

is contractible.

Proof. Denoteby V, =N,_ V,.Itis easy to see that A(C v is the nerve of the

jev

cover of V, by the convex sets f/j o V;NV,. Moreover, since v ¢ C, the sets

\7]- cover V,, in other words, V,, = U, V;. Therefore we can use the nerve
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lemma (see Hatcher, 2002, Corollary 4G.3, p. 460) and conclude that the
simplicial complex A(C), is homotopy equivalent to the set V, and thus
contractible.

We now give the proof of theorem 1 as a corollary of theorem 3:

Proof of Theorem 1. Given the conditionsi toiii of theorem 1, it is easy to see
that the maximal patterns of the localization A (C (0))), can be described as

max(A(C(a)),) ={t C (o \v) ||| = o] —[v]—1}.

Therefore, the simplicial complex A(C(0)),, can be identified with the
boundary of the (|o| — |v| — 1)-dimensional simplex o \ v, and thus is not
contractible. Therefore, C(o) is not a convex code and thus neither is C.

4.2 Proof of the No-Go Theorem 3. We prove the no-go theorem in two
steps. First, we find an explicit construction of a feedforward network that
encodes the nerve A/ (A) of any simplicial complex A. We then use a result
by Griinbaum (1970) showing the existence of an inverse nerve.

Recall that a face « € A of a simplicial complex is maximal if it is not
contained in any larger face of A. Let A C 2"l be an abstract simplicial
complex on m vertices and {a;, ..., o,} = max(A) be the maximal sets of
A. The nerve of A is another abstract simplicial complex A'(A) € 2" on n
vertices, such that for any nonempty v € [1]

veENA) & (o #0.
iev
Proposition 2. Let A C 20" be a simplicial complex with m vertices and n

maximal faces {ay, .. ., a,}. Then there exists a strictly feedforward network (U, 6)
such that

AC(U, 9)) = N(4).

Moreover, the network parameters U and 6 for such a network can be constructed
with

1
and 0; = 5 (4.2)

ia

{—n ifa &«

1 ifa € o,

Proof. Given the choice, equation 4.2, the regions H;" C R’go can be de-
scribed by the inequalities y, > 0 and

TN (43)

aca; aga;
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Note that equation 2.3 implies that
ACWU,0) ={o S [n]| [H #0)U0.
ieo
Thus, to show that A(C(U,6)) 2 N(A), we need to prove that for any
nonempty o € N'(A),
(H # 9. (4.4)
ico

For any nonempty o C [m], we define a vector y* Rgo as

o def 1 ifaea
! 0 ifa¢a.

Let o C [n] and define N;_ o; df a(o) € [m]. By the definition of the nerve,
if a nonempty o € N'(A), then a (o) # ¢ and plugging in y*©), inequality
4.3 becomes |o;| > 1. Thus, y*©) € N, H;" and property 4.4 holds.

[iSleg

In order to show that A(C(U, 6)) € N (A), we need to prove that

for any t ¢ NV(A), (H =2. (4.5)

i€t
Assume the converse: for some v ¢ N (A), there exists y € ()., H;f. From
the definition of the nerve, we obtain «(r) = ¥ and thus for every a € [m],

‘{jerlaeaj}’flﬂ—l,and‘{jef|a¢aj}21. (4.6)

Summing the inequalities in equation 4.3, over all j € 7, we obtain
Izl
22 Y n ) Ve
jer aca; jer aga;

Thus, using equation 4.6, we obtain

D vl —=1—n)
a=1

=Y ytjerlacal-nljer aga> >0

a=1

Taking into account that y, > 0 for all 4, we obtain that |z| > n 4 1, which
is a contradiction. Thus, condition 4.5 holds.
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To finish the proof of theorem 3 we use the following classical result
of Griinbaum (1970). (For completeness, we also give Griinbaum’s explicit
construction of the inverse nerve in the appendix.)

Theorem 4 (Griinbaum, 1970). For every abstract simplicial complex A, there
exists a simplicial complex A, such that N(A) = A.

Proof of Theorem 2. Given aset M C 2 of maximal patterns, choose an
abstract simplicial complex A such that N'(A) = A(M). By proposition 6,
prescription 4.2 yields a one-layer network network such that

ACU, 0) = N(A) =AM) = max(C(U,0)) =M.

Proof of Corollary 1. Given an abstract simplicial complex A C 2l
consider a one-layer neural network (U,6) from theorem 2, so that
max(C(U, #)) = max(A). The code words in C(U, ) are identified with
nonempty polyhedra in the positive orthant as in equation 2.3, with the

empty code word o = ¢ identified with the polyhedron P Miep Hi -
Now observe that the region Y =R”,\ P is covered by the convex
sets {H;"},.,, and for any nonempty o C [n], the intersection N, H; is
nonempty if and only if o € A(C(U, 0)) = A. Thus, A is the nerve of the
cover of Y by the convex sets {H;"}. Therefore, by the nerve lemma, Y is

homotopy equivalent to A6

4.3 Networks constrained by Dale’s Law.

Proof of Proposition 1. Suppose each neuron in the input layer is either
excitatory or inhibitory, that is, one can reorder the input neurons so that
U =[U, |U_]. Denote by o, < {1,...,n} the set of all neurons in the
output layer that are either “on” in the absence of external drive or receive

at least one excitatory connection:
Omax = {1 —6; > 0y U {i | 3] with U;; > 0}.

Because U = [UL, | U_], setting the firing rates of the excitatory neurons
sufficiently high and the firing rates of the inhibitory neurons to zero yields
a firing rate vector x € R”, with support o,.,, € C(U, #).” Moreover, any
element of the code C(U, ) must be a subset of o, .

%See e.g., Hatcher, 2002, corollary 4G.3 p. 460.
7Setting y i > max(iju__>0){¥} is sufficient.
if if
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5 Conclusion

Motivated by the idea that recurrent or many-layer feedforward architec-
ture may be necessary to shape the neural code, we set out to find com-
binatorial codes that cannot arise from one-layer feedforward networks.
Although we found a large class of such examples, the nonconvex codes,
we also observed that in the presence of noise, they would be virtually in-
distinguishable from other codes having the same maximal patterns. When
we considered coarse combinatorial codes, which keep track of only the
maximal patterns, we found that there do not exist any codes that can-
not be realized by a one-layer feedforward network.® On the contrary, any
coarse code in principle can be learned by a one-layer network. Our results
suggest that recurrent connections, or multiple layers, may not be necessary
for shaping the neural code.

Appendix

For completeness, we include the construction due to Griinbaum (1970) of
a simplicial complex A in the collection N’ ™'(A) for any abstract simplicial
complex A.

Suppose A € 2"l is an abstract simplicial complex with maximal faces
max(A) = {ay, ..., o). Write I(A) for a collection of vertices of A that can
be written as an intersection of its maximal faces,

I(A) = {v €2 |30 C [k] with {v} = ﬂai}.

ico

Now, choose the vertices of A to be the maximal faces of A along with
vertices of A, which do not appear as intersections of maximal faces:

V =max(A) U 2"\ I(A)).

The maximal faces max(A) = { B} ic[n)s Are chosen in one-to-one correspon-
dence with the vertices of A, with face g; supported on elements of V that

8Note that enumerating (counting) coarse codes is the same as enumerating simplicial
complexes or monotone functions and is often called Dedekind’s problem. Finding the
exact formula (or an algorithm) for such a number is a long-standing problem in combi-
natorics that is still unsolved. An asymptotic estimate of the log, M(n), where M(n) is the
number of simplicial complexes on 1 vertices is the following (Kleitman & Markowsky,

1975):
n n logn
<Ln/2J> = log, Mm) = (Ln/2J> <1 +O< n >>
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contain vertex i:

{oz]- e max(A) |ie a]-} ifi e I(A)
b= {{a]. e max(A) | i€ o) UL} ifi g I(A).

By copstruction, the only maximal intersections of the elements of
max (N (A)) are the e}ements of V corresponding to elements of max(A),
thus V(A) = Aand A e N71(A).

Example. Let A C 216l have maximal faces max(A) = {{1, 2, 3}, {2, 3,4},
and {2, 5, 6}}. The set I(A) consists of the single vertex 2, which is the only
vertex that appears as an intersection of maximal faces. The complex A
thus has vertices {{1, 2, 3}, {2, 3,4}, {2, 5, 6}, 1, 3, 4, 5, 6} and maximal faces
{{1,{1,2,3}}, {{1,2,3}, {2,3,4}, {2.5,6}}, {3.{1,2,3}, {2,3,4}}, {4,{2,3,4}},

{5,12,5, 6}}, {6, {2, 5, 6}}.
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